These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28594182)

  • 1. Novel Composite Gel Electrolytes with Enhanced Electrical Conductivity and Thermal Stability Prepared Using Self-Assembled Nanofibrillar Networks.
    Lai WC; Liu LJ; Huang PH
    Langmuir; 2017 Jun; 33(25):6390-6397. PubMed ID: 28594182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel poly(ethylene glycol) gel electrolytes prepared using self-assembled 1,3:2,4-dibenzylidene-D-sorbitol.
    Lai WC; Chen CC
    Soft Matter; 2014 Jan; 10(2):312-9. PubMed ID: 24651903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly behaviors of dibenzylidene sorbitol hybrid organogels with inorganic silica.
    Lai WC; Huang PH
    Soft Matter; 2017 May; 13(17):3107-3115. PubMed ID: 28393159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured polymers with embedded self-assembled networks: reversibly tunable phase behaviors and physical properties.
    Lai WC; Hsueh CY; Chang CW
    Soft Matter; 2019 Aug; 15(31):6427-6435. PubMed ID: 31342049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green Polymer Electrolytes Prepared by a Cost-Effective Approach.
    Lai WC; Liu LJ; Tseng SJ
    Langmuir; 2024 Aug; 40(31):16492-16501. PubMed ID: 39046930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel polymeric nanocomposites and porous materials prepared using organogels.
    Lai WC; Tseng SC
    Nanotechnology; 2009 Nov; 20(47):475606. PubMed ID: 19875871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured polymers prepared using a self-assembled nanofibrillar scaffold as a reverse template.
    Lai WC; Tseng SC; Tung SH; Huang YE; Raghavan SR
    J Phys Chem B; 2009 Jun; 113(23):8026-30. PubMed ID: 19445494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hydrophobicity of monomers on the structures and properties of 1,3:2,4-dibenzylidene-D-sorbitol organogels and polymers prepared by templating the gels.
    Lai WC; Tseng SJ; Chao YS
    Langmuir; 2011 Oct; 27(20):12630-5. PubMed ID: 21919442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical organogels composed of amphiphilic block copolymers and 1,3:2,4-dibenzylidene-D-sorbitol.
    Wilder EA; Hall CK; Spontak RJ
    J Colloid Interface Sci; 2003 Nov; 267(2):509-18. PubMed ID: 14583229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity.
    Ruiz-Olles J; Slavik P; Whitelaw NK; Smith DK
    Angew Chem Int Ed Engl; 2019 Mar; 58(13):4173-4178. PubMed ID: 30682215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximum bubble pressure rheology of low molecular mass organogels.
    Fei P; Wood SJ; Chen Y; Cavicchi KA
    Langmuir; 2015 Jan; 31(1):492-8. PubMed ID: 25582128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host-guest interactions of 5-fluorouracil in supramolecular organogels.
    Wang H; Zhang J; Zhang W; Yang Y
    Eur J Pharm Biopharm; 2009 Nov; 73(3):357-60. PubMed ID: 19615443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic gelation of silica nanoparticles and a sorbitol-based molecular gelator to yield highly-conductive free-standing gel electrolytes.
    Basrur VR; Guo J; Wang C; Raghavan SR
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):262-7. PubMed ID: 23294020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular gels with high strength by tuning of calix[4]arene-derived networks.
    Lee JH; Park J; Park JW; Ahn HJ; Jaworski J; Jung JH
    Nat Commun; 2015 Mar; 6():6650. PubMed ID: 25799459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries.
    Shim J; Kim DG; Kim HJ; Lee JH; Lee JC
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7690-701. PubMed ID: 25805120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose-silica aerogels.
    Demilecamps A; Beauger C; Hildenbrand C; Rigacci A; Budtova T
    Carbohydr Polym; 2015 May; 122():293-300. PubMed ID: 25817671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silica Gels Doped with Gold Nanoparticles: Preparation, Structure and Optical Properties.
    Shandurkov D; Danchova N; Spassov T; Petrov V; Tsekov R; Gutzov S
    Gels; 2023 Aug; 9(8):. PubMed ID: 37623118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitin-incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries.
    Stephan AM; Kumar TP; Kulandainathan MA; Lakshmi NA
    J Phys Chem B; 2009 Feb; 113(7):1963-71. PubMed ID: 19161288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Nanowire Silica Inside Self-Assembled Sodium Bis(2-ethylhexyl) Sulfosuccinate (AOT) Gels.
    Lai WC; Hong LT
    J Phys Chem B; 2016 Sep; 120(37):10010-7. PubMed ID: 27602986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks.
    Mantravadi R; Chinnam PR; Dikin DA; Wunder SL
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13426-36. PubMed ID: 27153318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.