These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Green Polymer Electrolytes Prepared by a Cost-Effective Approach. Lai WC; Liu LJ; Tseng SJ Langmuir; 2024 Aug; 40(31):16492-16501. PubMed ID: 39046930 [TBL] [Abstract][Full Text] [Related]
6. Novel polymeric nanocomposites and porous materials prepared using organogels. Lai WC; Tseng SC Nanotechnology; 2009 Nov; 20(47):475606. PubMed ID: 19875871 [TBL] [Abstract][Full Text] [Related]
7. Nanostructured polymers prepared using a self-assembled nanofibrillar scaffold as a reverse template. Lai WC; Tseng SC; Tung SH; Huang YE; Raghavan SR J Phys Chem B; 2009 Jun; 113(23):8026-30. PubMed ID: 19445494 [TBL] [Abstract][Full Text] [Related]
8. Effect of hydrophobicity of monomers on the structures and properties of 1,3:2,4-dibenzylidene-D-sorbitol organogels and polymers prepared by templating the gels. Lai WC; Tseng SJ; Chao YS Langmuir; 2011 Oct; 27(20):12630-5. PubMed ID: 21919442 [TBL] [Abstract][Full Text] [Related]
9. Physical organogels composed of amphiphilic block copolymers and 1,3:2,4-dibenzylidene-D-sorbitol. Wilder EA; Hall CK; Spontak RJ J Colloid Interface Sci; 2003 Nov; 267(2):509-18. PubMed ID: 14583229 [TBL] [Abstract][Full Text] [Related]
10. Self-Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity. Ruiz-Olles J; Slavik P; Whitelaw NK; Smith DK Angew Chem Int Ed Engl; 2019 Mar; 58(13):4173-4178. PubMed ID: 30682215 [TBL] [Abstract][Full Text] [Related]
11. Maximum bubble pressure rheology of low molecular mass organogels. Fei P; Wood SJ; Chen Y; Cavicchi KA Langmuir; 2015 Jan; 31(1):492-8. PubMed ID: 25582128 [TBL] [Abstract][Full Text] [Related]
12. Host-guest interactions of 5-fluorouracil in supramolecular organogels. Wang H; Zhang J; Zhang W; Yang Y Eur J Pharm Biopharm; 2009 Nov; 73(3):357-60. PubMed ID: 19615443 [TBL] [Abstract][Full Text] [Related]
13. Synergistic gelation of silica nanoparticles and a sorbitol-based molecular gelator to yield highly-conductive free-standing gel electrolytes. Basrur VR; Guo J; Wang C; Raghavan SR ACS Appl Mater Interfaces; 2013 Jan; 5(2):262-7. PubMed ID: 23294020 [TBL] [Abstract][Full Text] [Related]
14. Supramolecular gels with high strength by tuning of calix[4]arene-derived networks. Lee JH; Park J; Park JW; Ahn HJ; Jaworski J; Jung JH Nat Commun; 2015 Mar; 6():6650. PubMed ID: 25799459 [TBL] [Abstract][Full Text] [Related]
15. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries. Shim J; Kim DG; Kim HJ; Lee JH; Lee JC ACS Appl Mater Interfaces; 2015 Apr; 7(14):7690-701. PubMed ID: 25805120 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Nanowire Silica Inside Self-Assembled Sodium Bis(2-ethylhexyl) Sulfosuccinate (AOT) Gels. Lai WC; Hong LT J Phys Chem B; 2016 Sep; 120(37):10010-7. PubMed ID: 27602986 [TBL] [Abstract][Full Text] [Related]
20. High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks. Mantravadi R; Chinnam PR; Dikin DA; Wunder SL ACS Appl Mater Interfaces; 2016 Jun; 8(21):13426-36. PubMed ID: 27153318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]