These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28594263)

  • 1. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae.
    Zhang S; Liang M; Naqvi NI; Lin C; Qian W; Zhang LH; Deng YZ
    Autophagy; 2017 Aug; 13(8):1318-1330. PubMed ID: 28594263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-Free Quantitative Proteomics of Lysine Acetylome Identifies Substrates of Gcn5 in Magnaporthe oryzae Autophagy and Epigenetic Regulation.
    Liang M; Zhang S; Dong L; Kou Y; Lin C; Dai W; Zhang LH; Deng YZ
    mSystems; 2018; 3(6):. PubMed ID: 30505942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae.
    He M; Xu Y; Chen J; Luo Y; Lv Y; Su J; Kershaw MJ; Li W; Wang J; Yin J; Zhu X; Liu X; Chern M; Ma B; Wang J; Qin P; Chen W; Wang Y; Wang W; Ren Z; Wu X; Li P; Li S; Peng Y; Lin F; Talbot NJ; Chen X
    Autophagy; 2018; 14(9):1543-1561. PubMed ID: 29929416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate functional appressorium formation and pathogenicity in
    Yin Z; Chen C; Yang J; Feng W; Liu X; Zuo R; Wang J; Yang L; Zhong K; Gao C; Zhang H; Zheng X; Wang P; Zhang Z
    Autophagy; 2019 Jul; 15(7):1234-1257. PubMed ID: 30776962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A vacuolar glucoamylase, Sga1, participates in glycogen autophagy for proper asexual differentiation in Magnaporthe oryzae.
    Deng YZ; Naqvi NI
    Autophagy; 2010 May; 6(4):455-61. PubMed ID: 20383057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae.
    Deng YZ; Ramos-Pamplona M; Naqvi NI
    Autophagy; 2009 Jan; 5(1):33-43. PubMed ID: 19115483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorting nexin Snx41 is essential for conidiation and mediates glutathione-based antioxidant defense during invasive growth in Magnaporthe oryzae.
    Deng YZ; Qu Z; He Y; Naqvi NI
    Autophagy; 2012 Jul; 8(7):1058-70. PubMed ID: 22561104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae.
    Lee K; Singh P; Chung WC; Ash J; Kim TS; Hang L; Park S
    Fungal Genet Biol; 2006 Oct; 43(10):694-706. PubMed ID: 16765070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MoOpy2 is essential for fungal development, pathogenicity, and autophagy in Magnaporthe oryzae.
    Cai YY; Wang JY; Wu XY; Liang S; Zhu XM; Li L; Lu JP; Liu XH; Lin FC
    Environ Microbiol; 2022 Mar; 24(3):1653-1671. PubMed ID: 35229430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoST1 encoding a hexose transporter-like protein is involved in both conidiation and mycelial melanization of Magnaporthe oryzae.
    Saitoh H; Hirabuchi A; Fujisawa S; Mitsuoka C; Terauchi R; Takano Y
    FEMS Microbiol Lett; 2014 Mar; 352(1):104-13. PubMed ID: 24372780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Subunit of the COP9 Signalosome, MoCsn6, Is Involved in Fungal Development, Pathogenicity, and Autophagy in Rice Blast Fungus.
    Shen ZF; Li L; Wang JY; Zhang YR; Wang ZH; Liang S; Zhu XM; Lu JP; Lin FC; Liu XH
    Microbiol Spectr; 2022 Dec; 10(6):e0202022. PubMed ID: 36445131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MoMon1 is required for vacuolar assembly, conidiogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Gao HM; Liu XG; Shi HB; Lu JP; Yang J; Lin FC; Liu XH
    Res Microbiol; 2013 May; 164(4):300-9. PubMed ID: 23376292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae.
    Liu W; Xie S; Zhao X; Chen X; Zheng W; Lu G; Xu JR; Wang Z
    Mol Plant Microbe Interact; 2010 Apr; 23(4):366-75. PubMed ID: 20192824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae.
    Liu TB; Liu XH; Lu JP; Zhang L; Min H; Lin FC
    Autophagy; 2010 Jan; 6(1):74-85. PubMed ID: 19923912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine methylation is required for remodelling pre-mRNA splicing and induction of autophagy in rice blast fungus.
    Li Z; Wu L; Wu H; Zhang X; Mei J; Zhou X; Wang GL; Liu W
    New Phytol; 2020 Jan; 225(1):413-429. PubMed ID: 31478201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The LAMMER Kinase MoKns1 Regulates Growth, Conidiation and Pathogenicity in
    Li L; Zhu XM; Wu JQ; Cao N; Bao JD; Liu XH; Lin FC
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897680
    [No Abstract]   [Full Text] [Related]  

  • 17. Mitochondrial fission protein MoFis1 mediates conidiation and is required for full virulence of the rice blast fungus Magnaporthe oryzae.
    Khan IA; Ning G; Liu X; Feng X; Lin F; Lu J
    Microbiol Res; 2015 Sep; 178():51-8. PubMed ID: 26302847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atg24-assisted mitophagy in the foot cells is necessary for proper asexual differentiation in Magnaporthe oryzae.
    He Y; Deng YZ; Naqvi NI
    Autophagy; 2013 Nov; 9(11):1818-27. PubMed ID: 23958498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae.
    Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z
    Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twilight, a Novel Circadian-Regulated Gene, Integrates Phototropism with Nutrient and Redox Homeostasis during Fungal Development.
    Deng YZ; Qu Z; Naqvi NI
    PLoS Pathog; 2015 Jun; 11(6):e1004972. PubMed ID: 26102503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.