These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28594336)

  • 1. Flagged uniform particle splitting for variance reduction in proton and carbon ion track-structure simulations.
    Ramos-Méndez J; Schuemann J; Incerti S; Paganetti H; Schulte R; Faddegon B
    Phys Med Biol; 2017 Jul; 62(15):5908-5925. PubMed ID: 28594336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Track structure in radiation biology: theory and applications.
    Nikjoo H; Uehara S; Wilson WE; Hoshi M; Goodhead DT
    Int J Radiat Biol; 1998 Apr; 73(4):355-64. PubMed ID: 9587072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation-induced DNA damage by proton, helium and carbon ions in human fibroblast cell: Geant4-DNA and MCDS-based study.
    Chattaraj A; Selvam TP
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38870909
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra.
    Lazarakis P; Bug MU; Gargioni E; Guatelli S; Rabus H; Rosenfeld AB
    Phys Med Biol; 2012 Mar; 57(5):1231-50. PubMed ID: 22330641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4-DNA and LPCHEM codes.
    Ali Y; Auzel L; Monini C; Kriachok K; Létang JM; Testa E; Maigne L; Beuve M
    Med Phys; 2022 May; 49(5):3457-3469. PubMed ID: 35318686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology.
    Schuemann J; McNamara AL; Ramos-Méndez J; Perl J; Held KD; Paganetti H; Incerti S; Faddegon B
    Radiat Res; 2019 Feb; 191(2):125-138. PubMed ID: 30609382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions.
    Semenenko VA; Stewart RD
    Phys Med Biol; 2006 Apr; 51(7):1693-706. PubMed ID: 16552098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio.
    Ramos-Méndez J; Perl J; Schuemann J; McNamara A; Paganetti H; Faddegon B
    Phys Med Biol; 2018 May; 63(10):105014. PubMed ID: 29697057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the feasibility of TOPAS-nBio for Monte Carlo track structure simulations by adapting GEANT4-DNA examples application.
    Derksen L; Pfuhl T; Engenhart-Cabillic R; Zink K; Baumann KS
    Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34384060
    [No Abstract]   [Full Text] [Related]  

  • 12. A comparison of X-ray and proton beam low energy secondary electron track structures using the low energy models of Geant4.
    McNamara AL; Guatelli S; Prokopovich DA; Reinhard MI; Rosenfeld AB
    Int J Radiat Biol; 2012 Jan; 88(1-2):164-70. PubMed ID: 22040102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the consistency of Monte Carlo track structure DNA damage simulations.
    Pater P; Seuntjens J; El Naqa I; Bernal MA
    Med Phys; 2014 Dec; 41(12):121708. PubMed ID: 25471955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of chromatin condensation on the number of direct DSB damages induced by ions studied using a Monte Carlo code.
    Dos Santos M; Clairand I; Gruel G; Barquinero JF; Incerti S; Villagrasa C
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):469-73. PubMed ID: 24615262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulations of energy deposition and DNA damage using TOPAS-nBio.
    Wu J; Xie Y; Wang L; Wang Y
    Phys Med Biol; 2020 Nov; 65(22):225007. PubMed ID: 33179608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a simple DNA damage model developed for electrons to proton irradiation.
    Matsuya Y; Kai T; Parisi A; Yoshii Y; Sato T
    Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36228611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A
    Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries.
    McNamara A; Geng C; Turner R; Mendez JR; Perl J; Held K; Faddegon B; Paganetti H; Schuemann J
    Phys Med; 2017 Jan; 33():207-215. PubMed ID: 28017738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling and a Geant4-DNA study of the rejoining of direct and indirect DNA damage induced by low energy electrons and carbon ions.
    Mokari M; Moeini H; Farazmand S
    Int J Radiat Biol; 2023; 99(9):1391-1404. PubMed ID: 36745857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage and microdosimetry for carbon ions: Track structure simulations as the key to quantitative modeling of radiation-induced damage.
    Moeini H; Mokari M
    Med Phys; 2022 Jul; 49(7):4823-4836. PubMed ID: 35596669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.