BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28594421)

  • 1. Reversible light-dependent molecular switches on Ag/AgCl nanostructures.
    Song W; Querebillo CJ; Götz R; Katz S; Kuhlmann U; Gernert U; Weidinger IM; Hildebrandt P
    Nanoscale; 2017 Jun; 9(24):8380-8387. PubMed ID: 28594421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreduction of 4,4'-dimercaptoazobenzene on ag revealed by Raman scattering spectroscopy.
    Kim K; Kim KL; Shin KS
    Langmuir; 2013 Jan; 29(1):183-90. PubMed ID: 23252520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different behaviors in the transformation of PATP adsorbed on Ag or Au nanoparticles investigated by surface-enhanced Raman spectroscopy - a study of the effects from laser energy and annealing.
    Xu JF; Luo SY; Liu GK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 143():35-9. PubMed ID: 25710112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating.
    Mahmoud MA
    Phys Chem Chem Phys; 2017 Dec; 19(47):32016-32023. PubMed ID: 29177303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-induced chemical transformation of PATP adsorbed on Ag nanoparticles by surface-enhanced Raman spectroscopy-a study of the effects from surface morphology of substrate and surface coverage of PATP.
    Xu JF; Liu GK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():873-7. PubMed ID: 25467654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ag@Au Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy.
    Zhang J; Winget SA; Wu Y; Su D; Sun X; Xie ZX; Qin D
    ACS Nano; 2016 Feb; 10(2):2607-16. PubMed ID: 26812215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Intermolecular Distance on Surface-Plasmon-Assisted Catalysis.
    Wu S; Liu Y; Ma C; Wang J; Zhang Y; Song P; Xia L
    Langmuir; 2018 Jun; 34(25):7240-7247. PubMed ID: 29864285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-controlled plasmon-assisted surface catalysis reaction of 4-aminothiophenol dimerizing to p,p'-dimercaptoazobenzene on Ag nanoparticles.
    Liu Y; Yang D; Zhao Y; Yang Y; Wu S; Wang J; Xia L; Song P
    Heliyon; 2019 Apr; 5(4):e01545. PubMed ID: 31061908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascertaining p,p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles.
    Fang Y; Li Y; Xu H; Sun M
    Langmuir; 2010 Jun; 26(11):7737-46. PubMed ID: 20455558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Adsorption Orientation in Surface Plasmon-Driven Coupling Reactions Studied by Tip-Enhanced Raman Spectroscopy.
    Sun JJ; Su HS; Yue HL; Huang SC; Huang TX; Hu S; Sartin MM; Cheng J; Ren B
    J Phys Chem Lett; 2019 May; 10(10):2306-2312. PubMed ID: 31013094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous Au-Ag Alloy Particles Inlaid AgCl Membranes As Versatile Plasmonic Catalytic Interfaces with Simultaneous, in Situ SERS Monitoring.
    Cao Q; Yuan K; Liu Q; Liang C; Wang X; Cheng YF; Li Q; Wang M; Che R
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18491-500. PubMed ID: 26263301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering of 4,4'-dimercaptoazobenzene trapped in Au nanogaps.
    Kim K; Shin D; Kim KL; Shin KS
    Phys Chem Chem Phys; 2012 Mar; 14(12):4095-100. PubMed ID: 22334144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy.
    Liu M; Chen W
    Biosens Bioelectron; 2013 Aug; 46():68-73. PubMed ID: 23500479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of volatile organic chemicals on surface-enhanced Raman scattering of 4-aminobenzenethiol on Ag: comparison with the potential dependence.
    Kim K; Kim KL; Choi JY; Shin D; Shin KS
    Phys Chem Chem Phys; 2011 Sep; 13(34):15603-9. PubMed ID: 21799972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of 4-nitrothiophenol with low energy electrons: Implications for plasmon mediated reactions.
    Schürmann R; Luxford TFM; Vinklárek IS; Kočišek J; Zawadzki M; Bald I
    J Chem Phys; 2020 Sep; 153(10):104303. PubMed ID: 32933272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfite-triggered surface plasmon-catalyzed reduction of p-nitrothiophenol to p,p'-dimercaptoazobenzene.
    Xu G; Sun Y; Zhang Y; Xia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120282. PubMed ID: 34454131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral proof for the 4-aminophenyl disulfide plasma assisted catalytic reaction.
    Xia L; Wu S; Wang J; Ma C; Song P
    Sci Rep; 2017 Jun; 7(1):4358. PubMed ID: 28659594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisit of the plasmon-mediated chemical transformation of
    Kondo T; Inagaki M; Tanaka S; Tsukiji S; Motobayashi K; Ikeda K
    Phys Chem Chem Phys; 2023 May; 25(20):14618-14626. PubMed ID: 37191289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol.
    Sarhan RM; Koopman W; Schuetz R; Schmid T; Liebig F; Koetz J; Bargheer M
    Sci Rep; 2019 Feb; 9(1):3060. PubMed ID: 30816134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Enhanced Raman Spectroscopy Assisted by Radical Capturer for Tracking of Plasmon-Driven Redox Reaction.
    Yan X; Wang L; Tan X; Tian B; Zhang J
    Sci Rep; 2016 Jul; 6():30193. PubMed ID: 27444268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.