These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 28594889)
1. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations. Hariharan P; D'Souza GA; Horner M; Morrison TM; Malinauskas RA; Myers MR PLoS One; 2017; 12(6):e0178749. PubMed ID: 28594889 [TBL] [Abstract][Full Text] [Related]
2. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [TBL] [Abstract][Full Text] [Related]
3. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676 [TBL] [Abstract][Full Text] [Related]
4. Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients. Mantegazza A; Tobin N; Manning KB; Craven BA Biomech Model Mechanobiol; 2023 Apr; 22(2):433-451. PubMed ID: 36418603 [TBL] [Abstract][Full Text] [Related]
5. FDA Benchmark Medical Device Flow Models for CFD Validation. Malinauskas RA; Hariharan P; Day SW; Herbertson LH; Buesen M; Steinseifer U; Aycock KI; Good BC; Deutsch S; Manning KB; Craven BA ASAIO J; 2017; 63(2):150-160. PubMed ID: 28114192 [TBL] [Abstract][Full Text] [Related]
6. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study. Xue Y; Hellmuth R; Shin DH Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327 [TBL] [Abstract][Full Text] [Related]
7. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices. Craven BA; Aycock KI; Herbertson LH; Malinauskas RA Biomech Model Mechanobiol; 2019 Aug; 18(4):1005-1030. PubMed ID: 30815758 [TBL] [Abstract][Full Text] [Related]
8. Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump. Ponnaluri SV; Hariharan P; Herbertson LH; Manning KB; Malinauskas RA; Craven BA Ann Biomed Eng; 2023 Jan; 51(1):253-269. PubMed ID: 36401112 [TBL] [Abstract][Full Text] [Related]
9. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models. Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371 [TBL] [Abstract][Full Text] [Related]
10. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model. Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081 [TBL] [Abstract][Full Text] [Related]
11. Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation. Bordones AD; Leroux M; Kheyfets VO; Wu YA; Chen CY; Finol EA Ann Biomed Eng; 2018 Sep; 46(9):1309-1324. PubMed ID: 29786774 [TBL] [Abstract][Full Text] [Related]
12. Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500. Janiga G Comput Biol Med; 2014 Apr; 47():113-9. PubMed ID: 24561349 [TBL] [Abstract][Full Text] [Related]
13. CFD Assisted Evaluation of In Vitro Experiments on Bearingless Blood Pumps. Puentener P; Schuck M; Kolar JW IEEE Trans Biomed Eng; 2021 Apr; 68(4):1370-1378. PubMed ID: 33048670 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry. Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137 [TBL] [Abstract][Full Text] [Related]
15. On delayed transition to turbulence in an eccentric stenosis model for clean vs. noisy high-fidelity CFD. Haley AL; Valen-Sendstad K; Steinman DA J Biomech; 2021 Aug; 125():110588. PubMed ID: 34218038 [TBL] [Abstract][Full Text] [Related]
16. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier. Guyonvarch E; Ramin E; Kulahci M; Plósz BG Water Res; 2015 Oct; 83():396-411. PubMed ID: 26248321 [TBL] [Abstract][Full Text] [Related]
17. Shear stress evaluation on blood cells using computational fluid dynamics. Mitoh A; Suebe Y; Kashima T; Koyabu E; Sobu E; Okamoto E; Mitamura Y; Nishimura I Biomed Mater Eng; 2020; 31(3):169-178. PubMed ID: 32597794 [TBL] [Abstract][Full Text] [Related]
18. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers. van Hooff T; Blocken B; van Heijst GJ Indoor Air; 2013 Jun; 23(3):236-49. PubMed ID: 23094648 [TBL] [Abstract][Full Text] [Related]
19. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Frolov SV; Sindeev SV; Liepsch D; Balasso A Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725 [TBL] [Abstract][Full Text] [Related]
20. Computational modeling of shear-based hemolysis caused by renal obstruction. Segalova PA; Venkateswara Rao KT; Zarins CK; Taylor CA J Biomech Eng; 2012 Feb; 134(2):021003. PubMed ID: 22482670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]