These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28594962)

  • 1. Effects of bilateral anterior agranular insula lesions on food anticipatory activity in rats.
    Gavrila AM; Hood S; Robinson B; Amir S
    PLoS One; 2017; 12(6):e0179370. PubMed ID: 28594962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the role of locomotor sensitization in the circadian food entrainment pathway.
    Opiol H; de Zavalia N; Delorme T; Solis P; Rutherford S; Shalev U; Amir S
    PLoS One; 2017; 12(3):e0174113. PubMed ID: 28301599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats.
    Angeles-Castellanos M; Mendoza J; Escobar C
    Neuroscience; 2007 Jan; 144(1):344-55. PubMed ID: 17045749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment.
    Escobar C; Martínez-Merlos MT; Angeles-Castellanos M; del Carmen Miñana M; Buijs RM
    Eur J Neurosci; 2007 Nov; 26(10):2804-14. PubMed ID: 18001277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Behav Brain Res; 2005 Mar; 158(1):133-42. PubMed ID: 15680201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food cues and ghrelin recruit the same neuronal circuitry.
    van der Plasse G; Merkestein M; Luijendijk MC; van der Roest M; Westenberg HG; Mulder AB; Adan RA
    Int J Obes (Lond); 2013 Jul; 37(7):1012-9. PubMed ID: 23069665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sucrose modifies c-fos mRNA expression in the brain of rats maintained on feeding schedules.
    Mitra A; Lenglos C; Martin J; Mbende N; Gagné A; Timofeeva E
    Neuroscience; 2011 Sep; 192():459-74. PubMed ID: 21718761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleus-specific effects of meal duration on daily profiles of Period1 and Period2 protein expression in rats housed under restricted feeding.
    Verwey M; Amir S
    Neuroscience; 2011 Sep; 192():304-11. PubMed ID: 21767615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-anticipatory activity in rats.
    Landry GJ; Yamakawa GR; Webb IC; Mear RJ; Mistlberger RE
    J Biol Rhythms; 2007 Dec; 22(6):467-78. PubMed ID: 18057321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine is involved in food-anticipatory activity in mice.
    Liu YY; Liu TY; Qu WM; Hong ZY; Urade Y; Huang ZL
    J Biol Rhythms; 2012 Oct; 27(5):398-409. PubMed ID: 23010662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of infralimbic cortical lesions on temperature and locomotor activity responses to feeding in rats.
    Recabarren MP; Valdés JL; Farías P; Serón-Ferré M; Torrealba F
    Neuroscience; 2005; 134(4):1413-22. PubMed ID: 16039788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of food anticipatory activity in mice subjected to once- or twice-daily feeding periods.
    Rastogi A; Mintz EM
    Eur J Neurosci; 2017 Oct; 46(7):2265-2275. PubMed ID: 28858407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sex difference in circadian food-anticipatory rhythms in mice: Interaction with dopamine D1 receptor knockout.
    Michalik M; Steele AD; Mistlberger RE
    Behav Neurosci; 2015 Jun; 129(3):351-60. PubMed ID: 26030433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feeding-entrained circadian rhythms are attenuated by lesions of the parabrachial region in rats.
    Davidson AJ; Cappendijk SL; Stephan FK
    Am J Physiol Regul Integr Comp Physiol; 2000 May; 278(5):R1296-304. PubMed ID: 10801300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex-related difference in food-anticipatory activity of mice.
    Li Z; Wang Y; Sun KK; Wang K; Sun ZS; Zhao M; Wang J
    Horm Behav; 2015 Apr; 70():38-46. PubMed ID: 25736535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational and entrainment models of circadian food-anticipatory activity: evidence from non-24-hr feeding schedules.
    Mistlberger RE; Marchant EG
    Behav Neurosci; 1995 Aug; 109(4):790-8. PubMed ID: 7576223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian feeding entrains anticipatory metabolic activity in piriform cortex and olfactory tubercle, but not in suprachiasmatic nucleus.
    Olivo D; Caba M; Gonzalez-Lima F; Vázquez A; Corona-Morales A
    Brain Res; 2014 Dec; 1592():11-21. PubMed ID: 25281805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Main and accessory olfactory bulbs and their projections in the brain anticipate feeding in food-entrained rats.
    Caba M; Pabello M; Moreno ML; Meza E
    Chronobiol Int; 2014 Oct; 31(8):869-77. PubMed ID: 24915133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistence of meal-entrained circadian rhythms following area postrema lesions in the rat.
    Davidson AJ; Aragona BJ; Houpt TA; Stephan FK
    Physiol Behav; 2001 Oct; 74(3):349-54. PubMed ID: 11714499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food-anticipatory activity in Syrian hamsters: behavioral and molecular responses in the hypothalamus according to photoperiodic conditions.
    Dantas-Ferreira RF; Dumont S; Gourmelen S; Cipolla-Neto J; Simonneaux V; Pévet P; Challet E
    PLoS One; 2015; 10(5):e0126519. PubMed ID: 25970608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.