These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28595003)

  • 21. The photoreduction of nitrogenase.
    Druzhinin SYu ; Syrtsova LA; Uzenskaja AM; Likhtenstein GI
    Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):627-31. PubMed ID: 7680858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogenase activity and regeneration of the cellular ATP pool in Azotobacter vinelandii adapted to different oxygen concentrations.
    Linkerhägner K; Oelze J
    J Bacteriol; 1997 Feb; 179(4):1362-7. PubMed ID: 9023223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides.
    Ryle MJ; Seefeldt LC
    Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the formation of an oxygen-tolerant three-component nitrogenase complex from Azotobacter vinelandii.
    Scherings G; Haaker H; Wassink H; Veeger C
    Eur J Biochem; 1983 Oct; 135(3):591-9. PubMed ID: 6578037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noncoupled NADH:ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations.
    Bertsova YV; Bogachev AV; Skulachev VP
    J Bacteriol; 2001 Dec; 183(23):6869-74. PubMed ID: 11698376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A V-Nitrogenase Variant Containing a Citrate-Substituted Cofactor.
    Newcomb MP; Lee CC; Tanifuji K; Jasniewski AJ; Liedtke J; Ribbe MW; Hu Y
    Chembiochem; 2020 Jun; 21(12):1742-1748. PubMed ID: 31747483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerobic nitrogen-fixing bacteria for hydrogen and ammonium production: current state and perspectives.
    Barney BM
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1383-1399. PubMed ID: 31879824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dependence of oxygen-tolerant nitrogenase activity on divalent cations in Azotobacter vinelandii.
    Peterson JB
    J Bacteriol; 1992 May; 174(10):3399-402. PubMed ID: 1577706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of redox mediators on nitrogenase and hydrogenase activities in Azotobacter vinelandii.
    Huang HQ; Lin QM; Zhai WJ; Chen CH
    J Protein Chem; 2000 Nov; 19(8):671-8. PubMed ID: 11307951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox-Dependent Metastability of the Nitrogenase P-Cluster.
    Rutledge HL; Rittle J; Williamson LM; Xu WA; Gagnon DM; Tezcan FA
    J Am Chem Soc; 2019 Jun; 141(25):10091-10098. PubMed ID: 31146522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dependence of nitrogenase switch-off upon oxygen stress on the nitrogenase activity in Azotobacter vinelandii.
    Kuhla J; Oelze J
    J Bacteriol; 1988 Nov; 170(11):5325-9. PubMed ID: 3182730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efforts toward optimization of aerobic biohydrogen reveal details of secondary regulation of biological nitrogen fixation by nitrogenous compounds in Azotobacter vinelandii.
    Knutson CM; Plunkett MH; Liming RA; Barney BM
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):10315-10325. PubMed ID: 30250977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth and cyanide degradation of Azotobacter vinelandii in cyanide-containing wastewater system.
    Koksunan S; Vichitphan S; Laopaiboon L; Vichitphan K; Han J
    J Microbiol Biotechnol; 2013 Apr; 23(4):572-8. PubMed ID: 23568214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogenase complexes: multiple docking sites for a nucleotide switch protein.
    Tezcan FA; Kaiser JT; Mustafi D; Walton MY; Howard JB; Rees DC
    Science; 2005 Aug; 309(5739):1377-80. PubMed ID: 16123301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The crystal structure of Shethna protein II (FeSII) from Azotobacter vinelandii suggests a domain swap.
    Kabasakal BV; McFarlane CR; Cotton CAR; Schmidt A; Kung A; Lieber L; Murray JW
    Acta Crystallogr D Struct Biol; 2024 Aug; ():. PubMed ID: 38984904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum.
    Schlessman JL; Woo D; Joshua-Tor L; Howard JB; Rees DC
    J Mol Biol; 1998 Jul; 280(4):669-85. PubMed ID: 9677296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular ATP levels and nitrogenase switchoff upon oxygen stress in chemostat cultures of Azotobacter vinelandii.
    Linkerhägner K; Oelze J
    J Bacteriol; 1995 Sep; 177(18):5289-93. PubMed ID: 7665517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase.
    Sabra W; Zeng AP; Lünsdorf H; Deckwer WD
    Appl Environ Microbiol; 2000 Sep; 66(9):4037-44. PubMed ID: 10966426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Efficient Viologen-Based Electron Donor to Nitrogenase.
    Badalyan A; Yang ZY; Hu B; Luo J; Hu M; Liu TL; Seefeldt LC
    Biochemistry; 2019 Nov; 58(46):4590-4595. PubMed ID: 31682410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.