These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28595003)

  • 41. Regulated expression of the nifM of Azotobacter vinelandii in response to molybdenum and vanadium supplements in Burk's nitrogen-free growth medium.
    Lei S; Pulakat L; Gavini N
    Biochem Biophys Res Commun; 1999 Oct; 264(1):186-90. PubMed ID: 10527862
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rnf1 is the primary electron source to nitrogenase in a high-ammonium-accumulating strain of Azotobacter vinelandii.
    Barney BM; Plunkett MH
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5051-5061. PubMed ID: 35804159
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biosynthesis of the Metalloclusters of Nitrogenases.
    Hu Y; Ribbe MW
    Annu Rev Biochem; 2016 Jun; 85():455-83. PubMed ID: 26844394
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrogenase proteins from Gluconacetobacter diazotrophicus, a sugarcane-colonizing bacterium.
    Fisher K; Newton WE
    Biochim Biophys Acta; 2005 Jun; 1750(2):154-65. PubMed ID: 15925553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of an oxygen-stable nitrogenase complex isolated from Azotobacter chroococcum.
    Robson RL
    Biochem J; 1979 Sep; 181(3):569-75. PubMed ID: 518541
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle.
    Duyvis MG; Wassink H; Haaker H
    Biochemistry; 1998 Dec; 37(50):17345-54. PubMed ID: 9860849
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxidative titration of the nitrogenase VFe protein from Azotobacter vinelandii: an example of redox-gated electron flow.
    Tittsworth RC; Hales BJ
    Biochemistry; 1996 Jan; 35(2):479-87. PubMed ID: 8555218
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic and biophysical properties of a nitrogenase Apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii.
    Christiansen J; Goodwin PJ; Lanzilotta WN; Seefeldt LC; Dean DR
    Biochemistry; 1998 Sep; 37(36):12611-23. PubMed ID: 9730834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6.
    Noar J; Loveless T; Navarro-Herrero JL; Olson JW; Bruno-Bárcena JM
    Appl Environ Microbiol; 2015 Jul; 81(13):4507-16. PubMed ID: 25911479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diazotrophic Growth Allows Azotobacter vinelandii To Overcome the Deleterious Effects of a
    Mus F; Tseng A; Dixon R; Peters JW
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432097
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptional Analysis of an Ammonium-Excreting Strain of Azotobacter vinelandii Deregulated for Nitrogen Fixation.
    Barney BM; Plunkett MH; Natarajan V; Mus F; Knutson CM; Peters JW
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of Serine Coordination in the Structural and Functional Protection of the Nitrogenase P-Cluster.
    Rutledge HL; Field MJ; Rittle J; Green MT; Tezcan FA
    J Am Chem Soc; 2022 Dec; 144(48):22101-22112. PubMed ID: 36445204
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle.
    Yang ZY; Ledbetter R; Shaw S; Pence N; Tokmina-Lukaszewska M; Eilers B; Guo Q; Pokhrel N; Cash VL; Dean DR; Antony E; Bothner B; Peters JW; Seefeldt LC
    Biochemistry; 2016 Jul; 55(26):3625-35. PubMed ID: 27295169
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Formation of Nitrogenase NifDK Tetramers in the Mitochondria of Saccharomyces cerevisiae.
    Burén S; Young EM; Sweeny EA; Lopez-Torrejón G; Veldhuizen M; Voigt CA; Rubio LM
    ACS Synth Biol; 2017 Jun; 6(6):1043-1055. PubMed ID: 28221768
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbonyl sulfide and carbon dioxide as new substrates, and carbon disulfide as a new inhibitor, of nitrogenase.
    Seefeldt LC; Rasche ME; Ensign SA
    Biochemistry; 1995 Apr; 34(16):5382-9. PubMed ID: 7727396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover.
    Chan JM; Christiansen J; Dean DR; Seefeldt LC
    Biochemistry; 1999 May; 38(18):5779-85. PubMed ID: 10231529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrocatalytic CO
    Hu B; Harris DF; Dean DR; Liu TL; Yang ZY; Seefeldt LC
    Bioelectrochemistry; 2018 Apr; 120():104-109. PubMed ID: 29223886
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vanadium nitrogenase reduces CO.
    Lee CC; Hu Y; Ribbe MW
    Science; 2010 Aug; 329(5992):642. PubMed ID: 20689010
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter vinelandii under diazotrophic conditions.
    Noumsi CJ; Pourhassan N; Darnajoux R; Deicke M; Wichard T; Burrus V; Bellenger JP
    Environ Microbiol Rep; 2016 Feb; 8(1):76-84. PubMed ID: 26549632
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Steady-state kinetic studies of dithionite utilization, component protein interaction, and the formation of an oxidized iron protein intermediate during Azotobacter vinelandii nitrogenase catalysis.
    Johnson JL; Tolley AM; Erickson JA; Watt GD
    Biochemistry; 1996 Sep; 35(35):11336-42. PubMed ID: 8784188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.