These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 28595297)
1. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Neben CL; Tuzon CT; Mao X; Lay FD; Merrill AE Hum Mol Genet; 2017 Sep; 26(17):3253-3270. PubMed ID: 28595297 [TBL] [Abstract][Full Text] [Related]
2. Bent bone dysplasia syndrome reveals nucleolar activity for FGFR2 in ribosomal DNA transcription. Neben CL; Idoni B; Salva JE; Tuzon CT; Rice JC; Krakow D; Merrill AE Hum Mol Genet; 2014 Nov; 23(21):5659-71. PubMed ID: 24908667 [TBL] [Abstract][Full Text] [Related]
3. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Merrill AE; Sarukhanov A; Krejci P; Idoni B; Camacho N; Estrada KD; Lyons KM; Deixler H; Robinson H; Chitayat D; Curry CJ; Lachman RS; Wilcox WR; Krakow D Am J Hum Genet; 2012 Mar; 90(3):550-7. PubMed ID: 22387015 [TBL] [Abstract][Full Text] [Related]
4. Nuclear FGFR2 regulates musculoskeletal integration within the developing limb. Salva JE; Roberts RR; Stucky TS; Merrill AE Dev Dyn; 2019 Mar; 248(3):233-246. PubMed ID: 30620790 [TBL] [Abstract][Full Text] [Related]
5. Dura in the pathogenesis of syndromic craniosynostosis: fibroblast growth factor receptor 2 mutations in dural cells promote osteogenic proliferation and differentiation of osteoblasts. Ang BU; Spivak RM; Nah HD; Kirschner RE J Craniofac Surg; 2010 Mar; 21(2):462-7. PubMed ID: 20489451 [TBL] [Abstract][Full Text] [Related]
6. FGFR and PTEN signaling interact during lens development to regulate cell survival. Chaffee BR; Hoang TV; Leonard MR; Bruney DG; Wagner BD; Dowd JR; Leone G; Ostrowski MC; Robinson ML Dev Biol; 2016 Feb; 410(2):150-163. PubMed ID: 26764128 [TBL] [Abstract][Full Text] [Related]
7. Apert syndrome mutant FGFR2 and its soluble form reciprocally alter osteogenesis of primary calvarial osteoblasts. Suzuki H; Suda N; Shiga M; Kobayashi Y; Nakamura M; Iseki S; Moriyama K J Cell Physiol; 2012 Sep; 227(9):3267-77. PubMed ID: 22105374 [TBL] [Abstract][Full Text] [Related]
8. Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. Mansukhani A; Ambrosetti D; Holmes G; Cornivelli L; Basilico C J Cell Biol; 2005 Mar; 168(7):1065-76. PubMed ID: 15781477 [TBL] [Abstract][Full Text] [Related]
9. Effects of FGFR Signaling on Cell Proliferation and Differentiation of Apert Dental Cells. Lu C; Huguley S; Cui C; Cabaniss LB; Waite PD; Sarver DM; Mamaeva OA; MacDougall M Cells Tissues Organs; 2016; 201(1):26-37. PubMed ID: 26613250 [TBL] [Abstract][Full Text] [Related]
10. Activating (P253R, C278F) and dominant negative mutations of FGFR2: differential effects on calvarial bone cell proliferation, differentiation, and mineralization. Ratisoontorn C; Fan GF; McEntee K; Nah HD Connect Tissue Res; 2003; 44 Suppl 1():292-7. PubMed ID: 12952211 [TBL] [Abstract][Full Text] [Related]
11. Osteoblast proliferation or differentiation is regulated by relative strengths of opposing signaling pathways. Raucci A; Bellosta P; Grassi R; Basilico C; Mansukhani A J Cell Physiol; 2008 May; 215(2):442-51. PubMed ID: 17960591 [TBL] [Abstract][Full Text] [Related]
12. Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. Lengner CJ; Steinman HA; Gagnon J; Smith TW; Henderson JE; Kream BE; Stein GS; Lian JB; Jones SN J Cell Biol; 2006 Mar; 172(6):909-21. PubMed ID: 16533949 [TBL] [Abstract][Full Text] [Related]
13. The roles of RRP15 in nucleolar formation, ribosome biogenesis and checkpoint control in human cells. Dong Z; Zhu C; Zhan Q; Jiang W Oncotarget; 2017 Feb; 8(8):13240-13252. PubMed ID: 28099941 [TBL] [Abstract][Full Text] [Related]
14. A role for fibroblast growth factor receptor-2 in the altered osteoblast phenotype induced by Twist haploinsufficiency in the Saethre-Chotzen syndrome. Guenou H; Kaabeche K; Mée SL; Marie PJ Hum Mol Genet; 2005 Jun; 14(11):1429-39. PubMed ID: 15829502 [TBL] [Abstract][Full Text] [Related]
15. Inducible Activation of FGFR2 in Adult Mice Promotes Bone Formation After Bone Marrow Ablation. Xu W; Luo F; Wang Q; Tan Q; Huang J; Zhou S; Wang Z; Sun X; Kuang L; Jin M; Su N; Jiang W; Chen L; Qi H; Zhu Y; Chen B; Chen H; Chen S; Gao Y; Xu X; Deng C; Chen L; Xie Y; Du X J Bone Miner Res; 2017 Nov; 32(11):2194-2206. PubMed ID: 28650109 [TBL] [Abstract][Full Text] [Related]
16. The role of senescence and prosurvival signaling in controlling the oncogenic activity of FGFR2 mutants associated with cancer and birth defects. Ota S; Zhou ZQ; Link JM; Hurlin PJ Hum Mol Genet; 2009 Jul; 18(14):2609-21. PubMed ID: 19403560 [TBL] [Abstract][Full Text] [Related]
17. FGFR2-Cbl interaction in lipid rafts triggers attenuation of PI3K/Akt signaling and osteoblast survival. Dufour C; Guenou H; Kaabeche K; Bouvard D; Sanjay A; Marie PJ Bone; 2008 Jun; 42(6):1032-9. PubMed ID: 18374639 [TBL] [Abstract][Full Text] [Related]
18. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation. Nishimura K; Kumazawa T; Kuroda T; Katagiri N; Tsuchiya M; Goto N; Furumai R; Murayama A; Yanagisawa J; Kimura K Cell Rep; 2015 Mar; 10(8):1310-23. PubMed ID: 25732822 [TBL] [Abstract][Full Text] [Related]
19. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Bursac S; Brdovcak MC; Donati G; Volarevic S Biochim Biophys Acta; 2014 Jun; 1842(6):817-30. PubMed ID: 24514102 [TBL] [Abstract][Full Text] [Related]
20. Non-genotoxic activation of p53 through the RPL11-dependent ribosomal stress pathway. Morgado-Palacin L; Llanos S; Urbano-Cuadrado M; Blanco-Aparicio C; Megias D; Pastor J; Serrano M Carcinogenesis; 2014 Dec; 35(12):2822-30. PubMed ID: 25344835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]