These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28595396)

  • 1. Mechanism of the fcc-to-hcp phase transformation in solid Ar.
    Li B; Qian G; Oganov AR; Boulfelfel SE; Faller R
    J Chem Phys; 2017 Jun; 146(21):214502. PubMed ID: 28595396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hcp to fcc transformation path of scandium trihydride under high pressure.
    Pakornchote T; Pinsook U; Bovornratanaraks T
    J Phys Condens Matter; 2014 Jan; 26(2):025405. PubMed ID: 24326302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations.
    Wang BT; Shao JL; Zhang GC; Li WD; Zhang P
    J Phys Condens Matter; 2010 Nov; 22(43):435404. PubMed ID: 21403328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Martensitic fcc-to-hcp transformations in solid xenon under pressure: a first-principles study.
    Kim E; Nicol M; Cynn H; Yoo CS
    Phys Rev Lett; 2006 Jan; 96(3):035504. PubMed ID: 16486725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hcp/fcc nucleation in bcc iron under different anisotropic compressions at high strain rate: Molecular dynamics study.
    Shao JL; Wang P; Zhang FG; He AM
    Sci Rep; 2018 May; 8(1):7650. PubMed ID: 29769596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Martensitic fcc-to-hcp transformation observed in xenon at high pressure.
    Cynn H; Yoo CS; Baer B; Iota-Herbei V; McMahan AK; Nicol M; Carlson S
    Phys Rev Lett; 2001 May; 86(20):4552-5. PubMed ID: 11384281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposed mechanism of HCP → FCC phase transition in titianium through first principles calculation and experiments.
    Yang JX; Zhao HL; Gong HR; Song M; Ren QQ
    Sci Rep; 2018 Jan; 8(1):1992. PubMed ID: 29386540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stacking Fault Driven Phase Transformation in CrCoNi Medium Entropy Alloy.
    He H; Naeem M; Zhang F; Zhao Y; Harjo S; Kawasaki T; Wang B; Wu X; Lan S; Wu Z; Yin W; Wu Y; Lu Z; Kai JJ; Liu CT; Wang XL
    Nano Lett; 2021 Feb; 21(3):1419-1426. PubMed ID: 33464087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of the fcc-to-hcp transition in ensembles of argon nanoclusters.
    Krainyukova NV; Boltnev RE; Bernard EP; Khmelenko VV; Lee DM; Kiryukhin V
    Phys Rev Lett; 2012 Dec; 109(24):245505. PubMed ID: 23368345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-stage crystallization of charged colloids under low supersaturation conditions.
    Kratzer K; Arnold A
    Soft Matter; 2015 Mar; 11(11):2174-82. PubMed ID: 25635694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of hcp/fcc nucleation and growth in bcc iron driven by uniaxial compression.
    Wang BT; Shao JL; Zhang GC; Li WD; Zhang P
    J Phys Condens Matter; 2009 Dec; 21(49):495702. PubMed ID: 21836202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.
    Wang C; Wang H; Huang T; Xue X; Qiu F; Jiang Q
    Sci Rep; 2015 May; 5():10213. PubMed ID: 25998415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Stability of Co-Pt and Co-Au Core-Shell Structured Nanoparticles: Insights from Molecular Dynamics Simulations.
    Wen YH; Huang R; Shao GF; Sun SG
    J Phys Chem Lett; 2017 Sep; 8(17):4273-4278. PubMed ID: 28837772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue-Induced HCP-to-FCC Phase Transformation Resulting in Two FCC-Zr Variants in Pure Zirconium.
    Jiang Q; Chen Y; Shuai Q; Liu F; Li L; He C; Zhang H; Wang C; Liu Y; Wang Q
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The atomistic mechanism of hcp-to-bcc martensitic transformation in the Ti-Nb system revealed by molecular dynamics simulations.
    Li Y; Li J; Liu B
    Phys Chem Chem Phys; 2015 Feb; 17(6):4184-92. PubMed ID: 25566586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stacking in sediments of colloidal hard spheres.
    Marechal M; Hermes M; Dijkstra M
    J Chem Phys; 2011 Jul; 135(3):034510. PubMed ID: 21787016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reversibility of phase transitions in Ti/Co core/shell nanometre-sized particles.
    Delogu F; Manai G; Shvets I
    Nanotechnology; 2009 Jan; 20(1):015702. PubMed ID: 19417261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.
    Shapiro JN; Lin A; Ratsch C; Huffaker DL
    Nanotechnology; 2013 Nov; 24(47):475601. PubMed ID: 24192402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic in situ investigation of the morphogenesis of grains during pressure-induced phase transitions: molecular dynamics simulations of the B1-B2 transformation of RbCl.
    Zahn D; Tlatlik H
    Chemistry; 2010 Dec; 16(45):13385-9. PubMed ID: 20938938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature and void on the dynamics and microstructure of structural transition in single crystal iron.
    Shao JL; Wang P; Zhang FG; He AM
    J Phys Condens Matter; 2018 Jun; 30(25):255401. PubMed ID: 29749962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.