These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28595468)

  • 1. Compositional analysis of lignocellulosic biomass: conventional methodologies and future outlook.
    Krasznai DJ; Champagne Hartley R; Roy HM; Champagne P; Cunningham MF
    Crit Rev Biotechnol; 2018 Mar; 38(2):199-217. PubMed ID: 28595468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery.
    Galkin MV; Samec JS
    ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods.
    Sluiter JB; Ruiz RO; Scarlata CJ; Sluiter AD; Templeton DW
    J Agric Food Chem; 2010 Aug; 58(16):9043-53. PubMed ID: 20669951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.
    van Kuijk SJA; Sonnenberg ASM; Baars JJP; Hendriks WH; Cone JW
    Biotechnol Adv; 2015; 33(1):191-202. PubMed ID: 25447421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials.
    Sun S; Sun S; Cao X; Sun R
    Bioresour Technol; 2016 Jan; 199():49-58. PubMed ID: 26321216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials.
    Stöcker M
    Angew Chem Int Ed Engl; 2008; 47(48):9200-11. PubMed ID: 18937235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries.
    Jiang Y; Zeng X; Luque R; Tang X; Sun Y; Lei T; Liu S; Lin L
    ChemSusChem; 2017 Oct; 10(20):3982-3993. PubMed ID: 28691765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetallic catalysts for upgrading of biomass to fuels and chemicals.
    Alonso DM; Wettstein SG; Dumesic JA
    Chem Soc Rev; 2012 Dec; 41(24):8075-98. PubMed ID: 22872312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unconventional Pretreatment of Lignocellulose with Low-Temperature Plasma.
    Vanneste J; Ennaert T; Vanhulsel A; Sels B
    ChemSusChem; 2017 Jan; 10(1):14-31. PubMed ID: 27922209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemometric modeling of thermogravimetric data for the compositional analysis of forest biomass.
    Acquah GE; Via BK; Fasina OO; Adhikari S; Billor N; Eckhardt LG
    PLoS One; 2017; 12(3):e0172999. PubMed ID: 28253322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20224547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale analysis of lignocellulose recalcitrance towards OrganoCat pretreatment and fractionation.
    Weidener D; Dama M; Dietrich SK; Ohrem B; Pauly M; Leitner W; Domínguez de María P; Grande PM; Klose H
    Biotechnol Biofuels; 2020; 13():155. PubMed ID: 32944071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.
    Moreno AD; Ibarra D; Alvira P; Tomás-Pejó E; Ballesteros M
    Crit Rev Biotechnol; 2015; 35(3):342-54. PubMed ID: 24506661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review.
    Yoo CG; Meng X; Pu Y; Ragauskas AJ
    Bioresour Technol; 2020 Apr; 301():122784. PubMed ID: 31980318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review.
    Barakat A; de Vries H; Rouau X
    Bioresour Technol; 2013 Apr; 134():362-73. PubMed ID: 23499177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomethane Production From Lignocellulose: Biomass Recalcitrance and Its Impacts on Anaerobic Digestion.
    Xu N; Liu S; Xin F; Zhou J; Jia H; Xu J; Jiang M; Dong W
    Front Bioeng Biotechnol; 2019; 7():191. PubMed ID: 31440504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Cradle-to-grave' assessment of existing lignocellulose pretreatment technologies.
    da Costa Sousa L; Chundawat SP; Balan V; Dale BE
    Curr Opin Biotechnol; 2009 Jun; 20(3):339-47. PubMed ID: 19481437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20228730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.