These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28595468)

  • 21. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.
    Chundawat SP; Balan V; Dale BE
    Biotechnol Bioeng; 2008 Apr; 99(6):1281-94. PubMed ID: 18306256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: A review.
    Kumar Saini J; Himanshu ; Hemansi ; Kaur A; Mathur A
    Bioresour Technol; 2022 Sep; 360():127517. PubMed ID: 35772718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive approach of methods for microstructural analysis and analytical tools in lignocellulosic biomass assessment - A review.
    Rodrigues RCLB; Green Rodrigues B; Vieira Canettieri E; Acosta Martinez E; Palladino F; Wisniewski A; Rodrigues D
    Bioresour Technol; 2022 Mar; 348():126627. PubMed ID: 34958907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Preface for special issue on biomass refinery (2014)].
    Chen H; Qiu W
    Sheng Wu Gong Cheng Xue Bao; 2014 May; 30(5):691-4. PubMed ID: 25118392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Features of promising technologies for pretreatment of lignocellulosic biomass.
    Mosier N; Wyman C; Dale B; Elander R; Lee YY; Holtzapple M; Ladisch M
    Bioresour Technol; 2005 Apr; 96(6):673-86. PubMed ID: 15588770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property.
    McCann MC; Carpita NC
    J Exp Bot; 2015 Jul; 66(14):4109-18. PubMed ID: 26060266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.
    Zurawski JV; Khatibi PA; Akinosho HO; Straub CT; Compton SH; Conway JM; Lee LL; Ragauskas AJ; Davison BH; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lignocellulose in future biorefineries: Strategies for cost-effective production of biomaterials and bioenergy.
    Reshmy R; Philip E; Madhavan A; Sirohi R; Pugazhendhi A; Binod P; Kumar Awasthi M; Vivek N; Kumar V; Sindhu R
    Bioresour Technol; 2022 Jan; 344(Pt B):126241. PubMed ID: 34756981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging technologies for the pretreatment of lignocellulosic biomass.
    Hassan SS; Williams GA; Jaiswal AK
    Bioresour Technol; 2018 Aug; 262():310-318. PubMed ID: 29729930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids.
    Zhang Z; Song J; Han B
    Chem Rev; 2017 May; 117(10):6834-6880. PubMed ID: 28535680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass.
    Adsul MG; Singhvi MS; Gaikaiwari SA; Gokhale DV
    Bioresour Technol; 2011 Mar; 102(6):4304-12. PubMed ID: 21277771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Roles of H
    Li J; Zhang W; Xu S; Hu C
    Front Chem; 2020; 8():70. PubMed ID: 32117893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges.
    Jin M; Slininger PJ; Dien BS; Waghmode S; Moser BR; Orjuela A; Sousa Lda C; Balan V
    Trends Biotechnol; 2015 Jan; 33(1):43-54. PubMed ID: 25483049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents.
    Tang X; Zuo M; Li Z; Liu H; Xiong C; Zeng X; Sun Y; Hu L; Liu S; Lei T; Lin L
    ChemSusChem; 2017 Jul; 10(13):2696-2706. PubMed ID: 28425225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals.
    Binder JB; Raines RT
    J Am Chem Soc; 2009 Feb; 131(5):1979-85. PubMed ID: 19159236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Application of FTIR Microspectroscopy in the Study of Lignocellulosic Cell Walls].
    Ding DY; Zhou X; Xu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3393-6. PubMed ID: 26964216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass.
    Mora-Pale M; Meli L; Doherty TV; Linhardt RJ; Dordick JS
    Biotechnol Bioeng; 2011 Jun; 108(6):1229-45. PubMed ID: 21337342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass.
    Ozbayram EG; Kleinsteuber S; Nikolausz M
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):489-508. PubMed ID: 31797006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lignins of bioenergy crops: a review?
    Guragain YN; Herrera AI; Vadlani PV; Prakash O
    Nat Prod Commun; 2015 Jan; 10(1):201-8. PubMed ID: 25920245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.