These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
770 related articles for article (PubMed ID: 28595605)
1. Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins. Mendes I; Sanchez I; Franco-Duarte R; Camarasa C; Schuller D; Dequin S; Sousa MJ BMC Genomics; 2017 Jun; 18(1):455. PubMed ID: 28595605 [TBL] [Abstract][Full Text] [Related]
2. Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. Rossouw D; Naes T; Bauer FF BMC Genomics; 2008 Nov; 9():530. PubMed ID: 18990252 [TBL] [Abstract][Full Text] [Related]
3. Comparing the Effects of Different Unsaturated Fatty Acids on Fermentation Performance of Liu PT; Duan CQ; Yan GL Molecules; 2019 Feb; 24(3):. PubMed ID: 30717212 [TBL] [Abstract][Full Text] [Related]
4. Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain. Rollero S; Mouret JR; Sanchez I; Camarasa C; Ortiz-Julien A; Sablayrolles JM; Dequin S Microb Cell Fact; 2016 Feb; 15():32. PubMed ID: 26861624 [TBL] [Abstract][Full Text] [Related]
5. Nitrogenous Compound Utilization and Production of Volatile Organic Compounds among Commercial Wine Yeasts Highlight Strain-Specific Metabolic Diversity. Scott WT; van Mastrigt O; Block DE; Notebaart RA; Smid EJ Microbiol Spectr; 2021 Sep; 9(1):e0048521. PubMed ID: 34287034 [TBL] [Abstract][Full Text] [Related]
6. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607 [TBL] [Abstract][Full Text] [Related]
7. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. Stribny J; Gamero A; Pérez-Torrado R; Querol A Int J Food Microbiol; 2015 Jul; 205():41-6. PubMed ID: 25886016 [TBL] [Abstract][Full Text] [Related]
8. Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts. Scott WT; Smid EJ; Block DE; Notebaart RA Microb Cell Fact; 2021 Oct; 20(1):204. PubMed ID: 34674718 [TBL] [Abstract][Full Text] [Related]
9. Novel wine yeast with ARO4 and TYR1 mutations that overproduce 'floral' aroma compounds 2-phenylethanol and 2-phenylethyl acetate. Cordente AG; Solomon M; Schulkin A; Leigh Francis I; Barker A; Borneman AR; Curtin CD Appl Microbiol Biotechnol; 2018 Jul; 102(14):5977-5988. PubMed ID: 29744630 [TBL] [Abstract][Full Text] [Related]
10. Modulating aroma compounds during wine fermentation by manipulating carnitine acetyltransferases in Saccharomyces cerevisiae. Cordente AG; Swiegers JH; Hegardt FG; Pretorius IS FEMS Microbiol Lett; 2007 Feb; 267(2):159-66. PubMed ID: 17156120 [TBL] [Abstract][Full Text] [Related]
11. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Molina AM; Swiegers JH; Varela C; Pretorius IS; Agosin E Appl Microbiol Biotechnol; 2007 Dec; 77(3):675-87. PubMed ID: 17938912 [TBL] [Abstract][Full Text] [Related]
12. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Lilly M; Bauer FF; Lambrechts MG; Swiegers JH; Cozzolino D; Pretorius IS Yeast; 2006 Jul; 23(9):641-59. PubMed ID: 16845703 [TBL] [Abstract][Full Text] [Related]
13. Fermentation Characteristics and Aromatic Profile of Plum Wines Produced with Indigenous Microbiota and Pure Cultures of Selected Yeast. Miljić U; Puškaš V; Vučurović V; Muzalevski A J Food Sci; 2017 Jun; 82(6):1443-1450. PubMed ID: 28494091 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development. Stribny J; Romagnoli G; Pérez-Torrado R; Daran JM; Querol A Microb Cell Fact; 2016 Mar; 15():51. PubMed ID: 26971319 [TBL] [Abstract][Full Text] [Related]
15. Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by Hanseniaspora vineae strains. Martin V; Boido E; Giorello F; Mas A; Dellacassa E; Carrau F Yeast; 2016 Jul; 33(7):323-8. PubMed ID: 26945700 [TBL] [Abstract][Full Text] [Related]
16. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Lilly M; Lambrechts MG; Pretorius IS Appl Environ Microbiol; 2000 Feb; 66(2):744-53. PubMed ID: 10653746 [TBL] [Abstract][Full Text] [Related]
17. Analysing the impact of the nature of the nitrogen source on the formation of volatile compounds to unravel the aroma metabolism of two non-Saccharomyces strains. Seguinot P; Bloem A; Brial P; Meudec E; Ortiz-Julien A; Camarasa C Int J Food Microbiol; 2020 Mar; 316():108441. PubMed ID: 31778839 [TBL] [Abstract][Full Text] [Related]
18. High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation. Gamero A; Quintilla R; Groenewald M; Alkema W; Boekhout T; Hazelwood L Food Microbiol; 2016 Dec; 60():147-59. PubMed ID: 27554157 [TBL] [Abstract][Full Text] [Related]
19. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Medina K; Boido E; Fariña L; Gioia O; Gomez ME; Barquet M; Gaggero C; Dellacassa E; Carrau F Food Chem; 2013 Dec; 141(3):2513-21. PubMed ID: 23870989 [TBL] [Abstract][Full Text] [Related]
20. Dynamics and quantitative analysis of the synthesis of fermentative aromas by an evolved wine strain of Saccharomyces cerevisiae. Mouret JR; Cadiere A; Aguera E; Rollero S; Ortiz-Julien A; Sablayrolles JM; Dequin S Yeast; 2015 Jan; 32(1):257-69. PubMed ID: 24989462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]