These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28595803)

  • 21. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale.
    Aizenberg J; Weaver JC; Thanawala MS; Sundar VC; Morse DE; Fratzl P
    Science; 2005 Jul; 309(5732):275-8. PubMed ID: 16002612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comments on a skeleton design paradigm for a demosponge.
    Aluma Y; Ilan M; Sherman D
    J Struct Biol; 2011 Sep; 175(3):415-24. PubMed ID: 21605685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals.
    Sethmann I; Wörheide G
    Micron; 2008; 39(3):209-28. PubMed ID: 17360189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron microscope analyses of the bio-silica basal spicule from the Monorhaphis chuni sponge.
    Werner P; Blumtritt H; Zlotnikov I; Graff A; Dauphin Y; Fratzl P
    J Struct Biol; 2015 Aug; 191(2):165-74. PubMed ID: 26094876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.
    Wang X; Schröder HC; Müller WE
    Int Rev Cell Mol Biol; 2009; 273():69-115. PubMed ID: 19215903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni.
    Müller WE; Boreiko A; Schlossmacher U; Wang X; Eckert C; Kropf K; Li J; Schröder HC
    J Exp Biol; 2008 Feb; 211(Pt 3):300-9. PubMed ID: 18203984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic crystal lattices in the axial filament of silica spicules of Demospongiae.
    Werner P; Blumtritt H; Natalio F
    J Struct Biol; 2017 Jun; 198(3):186-195. PubMed ID: 28323140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of a lattice structure inspired by glass sponge.
    Li QW; Sun BH
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36322985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intra-epithelial spicules in a homosclerophorid sponge.
    Maldonado M; Riesgo A
    Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesostructure from hydration gradients in demosponge biosilica.
    Neilson JR; George NC; Murr MM; Seshadri R; Morse DE
    Chemistry; 2014 Apr; 20(17):4956-65. PubMed ID: 24633700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extreme flow simulations reveal skeletal adaptations of deep-sea sponges.
    Falcucci G; Amati G; Fanelli P; Krastev VK; Polverino G; Porfiri M; Succi S
    Nature; 2021 Jul; 595(7868):537-541. PubMed ID: 34290424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The terminology of sponge spicules.
    Łukowiak M; Van Soest R; Klautau M; Pérez T; Pisera A; Tabachnick K
    J Morphol; 2022 Dec; 283(12):1517-1545. PubMed ID: 36208470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The largest Bio-Silica Structure on Earth: The Giant Basal Spicule from the Deep-Sea Glass Sponge Monorhaphis chuni.
    Wang X; Gan L; Jochum KP; Schröder HC; Müller WE
    Evid Based Complement Alternat Med; 2011; 2011():540987. PubMed ID: 21941585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Morphological, optical, and structural characteristics of glass sponge spicules and the photoreceptor hypothesis of their survival].
    Voznesenskiĭ SS; Kul'chin IuN; Galkina AN; Sergeev AA
    Biofizika; 2010; 55(1):107-12. PubMed ID: 20184148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical and hydrodynamic analyses of helical strake-like ridges in a glass sponge.
    Fernandes MC; Saadat M; Cauchy-Dubois P; Inamura C; Sirota T; Milliron G; Haj-Hariri H; Bertoldi K; Weaver JC
    J R Soc Interface; 2021 Sep; 18(182):20210559. PubMed ID: 34493089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Axial growth of hexactinellid spicules: formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis.
    Wang X; Boreiko A; Schlossmacher U; Brandt D; Schröder HC; Li J; Kaandorp JA; Götz H; Duschner H; Müller WE
    J Struct Biol; 2008 Dec; 164(3):270-80. PubMed ID: 18805491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shaping highly regular glass architectures: A lesson from nature.
    Schoeppler V; Reich E; Vacelet J; Rosenthal M; Pacureanu A; Rack A; Zaslansky P; Zolotoyabko E; Zlotnikov I
    Sci Adv; 2017 Oct; 3(10):eaao2047. PubMed ID: 29057327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystallographic orientation and concentric layers in spicules of calcareous sponges.
    Rossi AL; Ribeiro B; Lemos M; Werckmann J; Borojevic R; Fromont J; Klautau M; Farina M
    J Struct Biol; 2016 Nov; 196(2):164-172. PubMed ID: 27090155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fibrillar organic phases and their roles in rigid biological composites.
    Arey BW; Park JJ; Mayer G
    J Mech Behav Biomed Mater; 2015 Jun; 46():343-9. PubMed ID: 25791572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonemasieboldi.
    Müller WE; Wendt K; Geppert C; Wiens M; Reiber A; Schröder HC
    Biosens Bioelectron; 2006 Jan; 21(7):1149-55. PubMed ID: 15935634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.