These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28596079)

  • 21. A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock.
    Pereira SL; Baker AJ
    Mol Biol Evol; 2006 Sep; 23(9):1731-40. PubMed ID: 16774978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell.
    Grealy A; Phillips M; Miller G; Gilbert MTP; Rouillard JM; Lambert D; Bunce M; Haile J
    Mol Phylogenet Evol; 2017 Apr; 109():151-163. PubMed ID: 28089793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A smörgåsbord of markers for avian ecology and evolution.
    Edwards SV
    Mol Ecol; 2008 Feb; 17(4):945-6. PubMed ID: 18221271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Birds in a bush: five genes indicate explosive evolution of avian orders.
    Poe S; Chubb AL
    Evolution; 2004 Feb; 58(2):404-15. PubMed ID: 15068356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The anatomy and physiology of the avian endocrine system.
    Ritchie M; Pilny AA
    Vet Clin North Am Exot Anim Pract; 2008 Jan; 11(1):1-14, v. PubMed ID: 18165134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Avian visual pigments: characteristics, spectral tuning, and evolution.
    Hart NS; Hunt DM
    Am Nat; 2007 Jan; 169 Suppl 1():S7-26. PubMed ID: 19426092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A universal method for the study of CR1 retroposons in nonmodel bird genomes.
    Suh A; Kriegs JO; Donnellan S; Brosius J; Schmitz J
    Mol Biol Evol; 2012 Oct; 29(10):2899-903. PubMed ID: 22522308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling.
    Reddy S; Kimball RT; Pandey A; Hosner PA; Braun MJ; Hackett SJ; Han KL; Harshman J; Huddleston CJ; Kingston S; Marks BD; Miglia KJ; Moore WS; Sheldon FH; Witt CC; Yuri T; Braun EL
    Syst Biol; 2017 Sep; 66(5):857-879. PubMed ID: 28369655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hormones in the city: endocrine ecology of urban birds.
    Bonier F
    Horm Behav; 2012 May; 61(5):763-72. PubMed ID: 22507448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Genomics as a Foundation for Evo-Devo Studies in Birds.
    Grayson P; Sin SYW; Sackton TB; Edwards SV
    Methods Mol Biol; 2017; 1650():11-46. PubMed ID: 28809012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early mesozoic coexistence of amniotes and hepadnaviridae.
    Suh A; Weber CC; Kehlmaier C; Braun EL; Green RE; Fritz U; Ray DA; Ellegren H
    PLoS Genet; 2014 Dec; 10(12):e1004559. PubMed ID: 25501991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular evolution of the toll-like receptor multigene family in birds.
    Alcaide M; Edwards SV
    Mol Biol Evol; 2011 May; 28(5):1703-15. PubMed ID: 21239391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SLC2A12 of SLC2 Gene Family in Bird Provides Functional Compensation for the Loss of SLC2A4 Gene in Other Vertebrates.
    Xiong Y; Lei F
    Mol Biol Evol; 2021 Apr; 38(4):1276-1291. PubMed ID: 33316072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics.
    Hahn ME; Karchner SI; Evans BR; Franks DG; Merson RR; Lapseritis JM
    J Exp Zool A Comp Exp Biol; 2006 Sep; 305(9):693-706. PubMed ID: 16902966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of avian poxvirus genomes, including a novel poxvirus from lesser flamingos (Phoenicopterus minor), highlights the lack of conservation of the central region.
    Carulei O; Douglass N; Williamson AL
    BMC Genomics; 2017 Dec; 18(1):947. PubMed ID: 29207949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feather development genes and associated regulatory innovation predate the origin of Dinosauria.
    Lowe CB; Clarke JA; Baker AJ; Haussler D; Edwards SV
    Mol Biol Evol; 2015 Jan; 32(1):23-8. PubMed ID: 25415961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive divergence of ancient gene duplicates in the avian MHC class II beta.
    Burri R; Salamin N; Studer RA; Roulin A; Fumagalli L
    Mol Biol Evol; 2010 Oct; 27(10):2360-74. PubMed ID: 20463048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recurrent DCC gene losses during bird evolution.
    Friocourt F; Lafont AG; Kress C; Pain B; Manceau M; Dufour S; Chédotal A
    Sci Rep; 2017 Feb; 7():37569. PubMed ID: 28240285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the 'reptile'-bird transition.
    Benson RB; Butler RJ; Carrano MT; O'Connor PM
    Biol Rev Camb Philos Soc; 2012 Feb; 87(1):168-93. PubMed ID: 21733078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2) Subfamilies in Birds.
    Almeida D; Maldonado E; Khan I; Silva L; Gilbert MT; Zhang G; Jarvis ED; O'Brien SJ; Johnson WE; Antunes A
    Genome Biol Evol; 2016 Apr; 8(4):1115-31. PubMed ID: 26979796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.