These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
675 related articles for article (PubMed ID: 28596307)
21. Combining metabolomics and gene expression analysis reveals that propionyl- and butyryl-carnitines are involved in late stages of arbuscular mycorrhizal symbiosis. Laparre J; Malbreil M; Letisse F; Portais JC; Roux C; Bécard G; Puech-Pagès V Mol Plant; 2014 Mar; 7(3):554-66. PubMed ID: 24121293 [TBL] [Abstract][Full Text] [Related]
22. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. Fiorilli V; Belmondo S; Khouja HR; Abbà S; Faccio A; Daghino S; Lanfranco L Mycorrhiza; 2016 Aug; 26(6):609-21. PubMed ID: 27075897 [TBL] [Abstract][Full Text] [Related]
23. The role of in vitro cultivation on symbiotic trait and function variation in a single species of arbuscular mycorrhizal fungus. Kokkoris V; Hart MM Fungal Biol; 2019 Oct; 123(10):732-744. PubMed ID: 31542191 [TBL] [Abstract][Full Text] [Related]
24. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. Olsson PA; Rahm J; Aliasgharzad N FEMS Microbiol Ecol; 2010 Apr; 72(1):125-31. PubMed ID: 20459516 [TBL] [Abstract][Full Text] [Related]
25. PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. Arthikala MK; Montiel J; Nava N; Santana O; Sánchez-López R; Cárdenas L; Quinto C Plant Cell Physiol; 2013 Aug; 54(8):1391-402. PubMed ID: 23788647 [TBL] [Abstract][Full Text] [Related]
26. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Wang S; Chen A; Xie K; Yang X; Luo Z; Chen J; Zeng D; Ren Y; Yang C; Wang L; Feng H; López-Arredondo DL; Herrera-Estrella LR; Xu G Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16649-16659. PubMed ID: 32586957 [TBL] [Abstract][Full Text] [Related]
27. The Lotus japonicus acyl-acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of Rhizophagus irregularis. Brands M; Wewer V; Keymer A; Gutjahr C; Dörmann P Plant J; 2018 Jul; 95(2):219-232. PubMed ID: 29687516 [TBL] [Abstract][Full Text] [Related]
28. Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Kameoka H; Tsutsui I; Saito K; Kikuchi Y; Handa Y; Ezawa T; Hayashi H; Kawaguchi M; Akiyama K Nat Microbiol; 2019 Oct; 4(10):1654-1660. PubMed ID: 31235957 [TBL] [Abstract][Full Text] [Related]
29. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation. Calabrese S; Kohler A; Niehl A; Veneault-Fourrey C; Boller T; Courty PE Plant Cell Physiol; 2017 Jun; 58(6):1003-1017. PubMed ID: 28387868 [TBL] [Abstract][Full Text] [Related]
30. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Campos-Soriano L; Segundo BS Plant Signal Behav; 2011 Apr; 6(4):553-7. PubMed ID: 21422823 [TBL] [Abstract][Full Text] [Related]
31. Earliest colonization events of Rhizophagus irregularis in rice roots occur preferentially in previously uncolonized cells. Kobae Y; Fujiwara T Plant Cell Physiol; 2014 Aug; 55(8):1497-510. PubMed ID: 24899551 [TBL] [Abstract][Full Text] [Related]
32. Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. Fernández I; Merlos M; López-Ráez JA; Martínez-Medina A; Ferrol N; Azcón C; Bonfante P; Flors V; Pozo MJ J Chem Ecol; 2014 Jul; 40(7):791-803. PubMed ID: 24997625 [TBL] [Abstract][Full Text] [Related]
33. Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Stumpe M; Carsjens JG; Stenzel I; Göbel C; Lang I; Pawlowski K; Hause B; Feussner I Phytochemistry; 2005 Apr; 66(7):781-91. PubMed ID: 15797604 [TBL] [Abstract][Full Text] [Related]
34. Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont. Xie X; Lin H; Peng X; Xu C; Sun Z; Jiang K; Huang A; Wu X; Tang N; Salvioli A; Bonfante P; Zhao B Mol Plant; 2016 Dec; 9(12):1583-1608. PubMed ID: 27688206 [TBL] [Abstract][Full Text] [Related]
36. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean. Zhang S; Zhou J; Wang G; Wang X; Liao H Appl Microbiol Biotechnol; 2015 Dec; 99(23):10225-35. PubMed ID: 26278539 [TBL] [Abstract][Full Text] [Related]
37. The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. Sieh D; Watanabe M; Devers EA; Brueckner F; Hoefgen R; Krajinski F New Phytol; 2013 Jan; 197(2):606-616. PubMed ID: 23190168 [TBL] [Abstract][Full Text] [Related]
38. Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation. Aloui A; Dumas-Gaudot E; Daher Z; van Tuinen D; Aschi-Smit S; Morandi D Plant Physiol Biochem; 2012 Nov; 60():233-9. PubMed ID: 23000816 [TBL] [Abstract][Full Text] [Related]
39. Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. Hammer EC; Pallon J; Wallander H; Olsson PA FEMS Microbiol Ecol; 2011 May; 76(2):236-44. PubMed ID: 21223336 [TBL] [Abstract][Full Text] [Related]
40. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Li J; Sun Y; Jiang X; Chen B; Zhang X Ecotoxicol Environ Saf; 2018 Aug; 157():235-243. PubMed ID: 29625397 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]