These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 28596546)
1. Electro-Forming and Electro-Breaking of Nanoscale Ag Filaments for Conductive-Bridging Random-Access Memory Cell using Ag-Doped Polymer-Electrolyte between Pt Electrodes. Song MJ; Kwon KH; Park JG Sci Rep; 2017 Jun; 7(1):3065. PubMed ID: 28596546 [TBL] [Abstract][Full Text] [Related]
2. Flexible conductive-bridging random-access-memory cell vertically stacked with top Ag electrode, PEO, PVK, and bottom Pt electrode. Seung HM; Kwon KC; Lee GS; Park JG Nanotechnology; 2014 Oct; 25(43):435204. PubMed ID: 25297517 [TBL] [Abstract][Full Text] [Related]
3. Addressable Direct-Write Nanoscale Filament Formation and Dissolution by Nanoparticle-Mediated Bipolar Electrochemistry. Crouch GM; Han D; Fullerton-Shirey SK; Go DB; Bohn PW ACS Nano; 2017 May; 11(5):4976-4984. PubMed ID: 28459548 [TBL] [Abstract][Full Text] [Related]
4. Rational Design on Controllable Cation Injection with Improved Conductive-Bridge Random Access Memory by Glancing Angle Deposition Technology toward Neuromorphic Application. Shih YC; Shen YC; Cheng YK; Chaudhary M; Yang TY; Yu YJ; Chueh YL ACS Appl Mater Interfaces; 2021 Nov; 13(46):55470-55480. PubMed ID: 34775743 [TBL] [Abstract][Full Text] [Related]
5. Cluster-Type Filaments Induced by Doping in Low-Operation-Current Conductive Bridge Random Access Memory. Sun Y; Song C; Yin S; Qiao L; Wan Q; Liu J; Wang R; Zeng F; Pan F ACS Appl Mater Interfaces; 2020 Jul; 12(26):29481-29486. PubMed ID: 32490665 [TBL] [Abstract][Full Text] [Related]
7. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode. Kim JH; Nam KH; Hwang I; Cho WJ; Park B; Chung HB J Nanosci Nanotechnol; 2014 Dec; 14(12):9498-503. PubMed ID: 25971090 [TBL] [Abstract][Full Text] [Related]
8. Electric Control of Exchange Bias at Room Temperature by Resistive Switching via Electrochemical Metallization. Yuan Y; Qu J; Wei L; Zheng R; Lu Y; Liu R; Liu T; Chen J; Luo L; Du G; You B; Zhang W; Zhang C; Zhu L; Hu Y; Xu Q; Du J ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666293 [TBL] [Abstract][Full Text] [Related]
9. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Li M; Zhuge F; Zhu X; Yin K; Wang J; Liu Y; He C; Chen B; Li RW Nanotechnology; 2010 Oct; 21(42):425202. PubMed ID: 20858929 [TBL] [Abstract][Full Text] [Related]
10. Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching. Sun Y; Song C; Yin J; Chen X; Wan Q; Zeng F; Pan F ACS Appl Mater Interfaces; 2017 Oct; 9(39):34064-34070. PubMed ID: 28901743 [TBL] [Abstract][Full Text] [Related]
11. Improved performance of ZnO-based resistive memory by internal diffusion of Ag atoms. Peng CN; Wang CW; Huang JS; Chang WY; Wu WW; Chueh YL J Nanosci Nanotechnol; 2012 Aug; 12(8):6271-5. PubMed ID: 22962735 [TBL] [Abstract][Full Text] [Related]
12. Nanoscale 3D Stackable Ag-Doped HfO Park JH; Kim D; Kang DY; Jeon DS; Kim TG ACS Appl Mater Interfaces; 2019 Aug; 11(32):29408-29415. PubMed ID: 31328497 [TBL] [Abstract][Full Text] [Related]
13. Sulfur poisoning of Pt and PtCo anode and cathode catalysts in polymer electrolyte fuel cells studied by operando near ambient pressure hard X-ray photoelectron spectroscopy. Chaveanghong S; Nakamura T; Takagi Y; Cagnon B; Uruga T; Tada M; Iwasawa Y; Yokoyama T Phys Chem Chem Phys; 2021 Feb; 23(6):3866-3873. PubMed ID: 33538733 [TBL] [Abstract][Full Text] [Related]
14. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Liu Q; Sun J; Lv H; Long S; Yin K; Wan N; Li Y; Sun L; Liu M Adv Mater; 2012 Apr; 24(14):1844-9. PubMed ID: 22407902 [TBL] [Abstract][Full Text] [Related]
15. Silicon compatible Sn-based resistive switching memory. Sonde S; Chakrabarti B; Liu Y; Sasikumar K; Lin J; Stan L; Divan R; Ocola LE; Rosenmann D; Choudhury P; Ni K; Sankaranarayanan SKRS; Datta S; Guha S Nanoscale; 2018 May; 10(20):9441-9449. PubMed ID: 29663006 [TBL] [Abstract][Full Text] [Related]
16. Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory. Qin S; Liu Z; Zhang G; Zhang J; Sun Y; Wu H; Qian H; Yu Z Phys Chem Chem Phys; 2015 Apr; 17(14):8627-32. PubMed ID: 25750983 [TBL] [Abstract][Full Text] [Related]
17. Conductive-bridging random access memory: challenges and opportunity for 3D architecture. Jana D; Roy S; Panja R; Dutta M; Rahaman SZ; Mahapatra R; Maikap S Nanoscale Res Lett; 2015; 10():188. PubMed ID: 25977660 [TBL] [Abstract][Full Text] [Related]
18. Effect of tungsten doping on the variability of InZnO conductive-bridging random access memory. Gan KJ; Liu PT; Ruan DB; Hsu CC; Chiu YC; Sze SM Nanotechnology; 2021 Jan; 32(3):035203. PubMed ID: 33022668 [TBL] [Abstract][Full Text] [Related]
19. Study of in Situ Silver Migration in Amorphous Boron Nitride CBRAM Device. Jeon YR; Abbas Y; Sokolov AS; Kim S; Ku B; Choi C ACS Appl Mater Interfaces; 2019 Jul; 11(26):23329-23336. PubMed ID: 31252457 [TBL] [Abstract][Full Text] [Related]
20. Analytically and empirically consistent characterization of the resistive switching mechanism in a Ag conducting-bridge random-access memory device through a pseudo-liquid interpretation approach. Choi YJ; Bang S; Kim TH; Hong K; Kim S; Kim S; Cho S; Park BG Phys Chem Chem Phys; 2021 Dec; 23(48):27234-27243. PubMed ID: 34853837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]