BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 28597524)

  • 1. Loosening of Lipid Packing Promotes Oligoarginine Entry into Cells.
    Murayama T; Masuda T; Afonin S; Kawano K; Takatani-Nakase T; Ida H; Takahashi Y; Fukuma T; Ulrich AS; Futaki S
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7644-7647. PubMed ID: 28597524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous Membrane Translocating Peptides: The Role of Leucine-Arginine Consensus Motifs.
    Fuselier T; Wimley WC
    Biophys J; 2017 Aug; 113(4):835-846. PubMed ID: 28834720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Vesicle Size on the Cytolysis of Cell-Penetrating Peptides (CPPs).
    Sakamoto K; Kitano T; Kuwahara H; Tedani M; Aburai K; Futaki S; Abe M; Sakai H; Ohtaka H; Yamashita Y
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free energy of translocating an arginine-rich cell-penetrating peptide across a lipid bilayer suggests pore formation.
    Huang K; García AE
    Biophys J; 2013 Jan; 104(2):412-20. PubMed ID: 23442863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating molecular descriptors in cell-penetrating peptides prediction with deep learning: Employing N, O, and hydrophobicity according to the Eisenberg scale.
    Seixas Feio JA; de Oliveira ECL; de Sales CS; da Costa KS; E Lima AHL
    PLoS One; 2024; 19(6):e0305253. PubMed ID: 38870192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-tuned membrane active Ir-complexed oligoarginine overcomes cancer cell drug resistance and triggers immune responses in mice.
    Ji S; Yang X; Chen X; Li A; Yan D; Xu H; Fei H
    Chem Sci; 2020 Aug; 11(34):9126-9133. PubMed ID: 34094193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide.
    Akishiba M; Takeuchi T; Kawaguchi Y; Sakamoto K; Yu HH; Nakase I; Takatani-Nakase T; Madani F; Gräslund A; Futaki S
    Nat Chem; 2017 Aug; 9(8):751-761. PubMed ID: 28754944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of electronic-neutral penetrating peptides cyclosporin A to deliver pro-apoptotic peptide: A possibly better choice than positively charged TAT.
    Gao W; Yang X; Lin Z; He B; Mei D; Wang D; Zhang H; Zhang H; Dai W; Wang X; Zhang Q
    J Control Release; 2017 Sep; 261():174-186. PubMed ID: 28662902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced and Prolonged Cell-Penetrating Abilities of Arginine-Rich Peptides by Introducing Cyclic α,α-Disubstituted α-Amino Acids with Stapling.
    Oba M; Kunitake M; Kato T; Ueda A; Tanaka M
    Bioconjug Chem; 2017 Jul; 28(7):1801-1806. PubMed ID: 28603971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of a Glycolipid MPIase in Sec-Independent Membrane Protein Insertion.
    Nomura K; Mori S; Shimamoto K
    Membranes (Basel); 2024 Feb; 14(2):. PubMed ID: 38392675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-Surface-Retained Peptide Additives for the Cytosolic Delivery of Functional Proteins.
    Arafiles JVV; Franke J; Franz L; Gómez-González J; Kemnitz-Hassanin K; Hackenberger CPR
    J Am Chem Soc; 2023 Oct; 145(45):24535-48. PubMed ID: 37906525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inkjet-Based Intracellular Delivery System that Effectively Utilizes Cell-Penetrating Peptides for Cytosolic Introduction of Biomacromolecules through the Cell Membrane.
    Omura M; Morimoto K; Araki Y; Hirose H; Kawaguchi Y; Kitayama Y; Goto Y; Harada A; Fujii I; Takatani-Nakase T; Futaki S; Nakase I
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):47855-47865. PubMed ID: 37792057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides.
    Zakany F; Mándity IM; Varga Z; Panyi G; Nagy P; Kovacs T
    Cells; 2023 Jun; 12(13):. PubMed ID: 37443733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Uptake Relationship Study of DABCYL Derivatives Linked to Cyclic Cell-Penetrating Peptides for Live-Cell Delivery of Synthetic Proteins.
    Saha A; Mandal S; Arafiles JVV; Gómez-González J; Hackenberger CPR; Brik A
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202207551. PubMed ID: 36004945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphilic Gold Nanoparticles: A Biomimetic Tool to Gain Mechanistic Insights into Peptide-Lipid Interactions.
    Canepa E; Relini A; Bochicchio D; Lavagna E; Mescola A
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-Penetrating Peptides.
    Zorko M; Langel Ü
    Methods Mol Biol; 2022; 2383():3-32. PubMed ID: 34766279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature.
    Sakamoto K; Morishita T; Aburai K; Ito D; Imura T; Sakai K; Abe M; Nakase I; Futaki S; Sakai H
    Sci Rep; 2021 Jan; 11(1):31. PubMed ID: 33420144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TAT-RasGAP
    Serulla M; Ichim G; Stojceski F; Grasso G; Afonin S; Heulot M; Schober T; Roth R; Godefroy C; Milhiet PE; Das K; García-Sáez AJ; Danani A; Widmann C
    Proc Natl Acad Sci U S A; 2020 Dec; 117(50):31871-31881. PubMed ID: 33257567
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.