These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 28597807)
1. Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Gil-Bea FJ; Aldanondo G; Lasa-Fernández H; López de Munain A; Vallejo-Illarramendi A Expert Rev Mol Med; 2017 Jun; 19():e7. PubMed ID: 28597807 [TBL] [Abstract][Full Text] [Related]
2. A novel hypothesis on metal dyshomeostasis and mitochondrial dysfunction in amyotrophic lateral sclerosis: Potential pathogenetic mechanism and therapeutic implications. Nakagawa Y; Yamada S Eur J Pharmacol; 2021 Feb; 892():173737. PubMed ID: 33220280 [TBL] [Abstract][Full Text] [Related]
3. Dysregulation of intracellular copper homeostasis is common to transgenic mice expressing human mutant superoxide dismutase-1s regardless of their copper-binding abilities. Tokuda E; Okawa E; Watanabe S; Ono S; Marklund SL Neurobiol Dis; 2013 Jun; 54():308-19. PubMed ID: 23321002 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1. Tokuda E; Okawa E; Watanabe S; Ono S Hum Mol Genet; 2014 Mar; 23(5):1271-85. PubMed ID: 24163136 [TBL] [Abstract][Full Text] [Related]
5. Altered Metabolic Homeostasis in Amyotrophic Lateral Sclerosis: Mechanisms of Energy Imbalance and Contribution to Disease Progression. Ioannides ZA; Ngo ST; Henderson RD; McCombe PA; Steyn FJ Neurodegener Dis; 2016; 16(5-6):382-97. PubMed ID: 27400276 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial Dyshomeostasis as an Early Hallmark and a Therapeutic Target in Amyotrophic Lateral Sclerosis. Belosludtseva NV; Matveeva LA; Belosludtsev KN Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069154 [TBL] [Abstract][Full Text] [Related]
7. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Pasinelli P; Brown RH Nat Rev Neurosci; 2006 Sep; 7(9):710-23. PubMed ID: 16924260 [TBL] [Abstract][Full Text] [Related]
8. Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Dupuis L; Gonzalez de Aguilar JL; Oudart H; de Tapia M; Barbeito L; Loeffler JP Neurodegener Dis; 2004; 1(6):245-54. PubMed ID: 16908975 [TBL] [Abstract][Full Text] [Related]
9. Calcium Dyshomeostasis and Lysosomal Ca Tedeschi V; Petrozziello T; Secondo A Cells; 2019 Oct; 8(10):. PubMed ID: 31597311 [TBL] [Abstract][Full Text] [Related]
12. Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Watanabe M; Dykes-Hoberg M; Culotta VC; Price DL; Wong PC; Rothstein JD Neurobiol Dis; 2001 Dec; 8(6):933-41. PubMed ID: 11741389 [TBL] [Abstract][Full Text] [Related]
13. Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Cozzolino M; Pesaresi MG; Gerbino V; Grosskreutz J; Carrì MT Antioxid Redox Signal; 2012 Nov; 17(9):1277-330. PubMed ID: 22413952 [TBL] [Abstract][Full Text] [Related]
14. Amyotrophic lateral sclerosis from bench to bedside. Lomen-Hoerth C Semin Neurol; 2008 Apr; 28(2):205-11. PubMed ID: 18351522 [TBL] [Abstract][Full Text] [Related]
15. p53 is abnormally elevated and active in the CNS of patients with amyotrophic lateral sclerosis. Martin LJ Neurobiol Dis; 2000 Dec; 7(6 Pt B):613-22. PubMed ID: 11114260 [TBL] [Abstract][Full Text] [Related]
16. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Sheykhansari S; Kozielski K; Bill J; Sitti M; Gemmati D; Zamboni P; Singh AV Cell Death Dis; 2018 Mar; 9(3):348. PubMed ID: 29497049 [TBL] [Abstract][Full Text] [Related]
17. Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Jiang HQ; Ren M; Jiang HZ; Wang J; Zhang J; Yin X; Wang SY; Qi Y; Wang XD; Feng HL Neuroscience; 2014 Sep; 277():132-8. PubMed ID: 24699224 [TBL] [Abstract][Full Text] [Related]
18. GLT1 overexpression in SOD1(G93A) mouse cervical spinal cord does not preserve diaphragm function or extend disease. Li K; Hala TJ; Seetharam S; Poulsen DJ; Wright MC; Lepore AC Neurobiol Dis; 2015 Jun; 78():12-23. PubMed ID: 25818008 [TBL] [Abstract][Full Text] [Related]
19. AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis. Perera ND; Turner BJ Neurochem Res; 2016 Mar; 41(3):544-53. PubMed ID: 26202426 [TBL] [Abstract][Full Text] [Related]
20. The Overexpression of TDP-43 Protein in the Neuron and Oligodendrocyte Cells Causes the Progressive Motor Neuron Degeneration in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Lu Y; Tang C; Zhu L; Li J; Liang H; Zhang J; Xu R Int J Biol Sci; 2016; 12(9):1140-9. PubMed ID: 27570488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]