These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 28597820)

  • 1. Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions.
    Cook GM; Hards K; Dunn E; Heikal A; Nakatani Y; Greening C; Crick DC; Fontes FL; Pethe K; Hasenoehrl E; Berney M
    Microbiol Spectr; 2017 Jun; 5(3):. PubMed ID: 28597820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Energy Metabolism in
    Bald D; Villellas C; Lu P; Koul A
    mBio; 2017 Apr; 8(2):. PubMed ID: 28400527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net.
    Gupta S; Fatima Z; Kumawat S
    Biosystems; 2021 Nov; 209():104509. PubMed ID: 34461147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis.
    Urban M; Šlachtová V; Brulíková L
    Eur J Med Chem; 2021 Feb; 212():113139. PubMed ID: 33422979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunities for Overcoming
    Torfs E; Piller T; Cos P; Cappoen D
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31212777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel proteasome inhibitors as potential drugs to combat tuberculosis.
    Cheng Y; Pieters J
    J Mol Cell Biol; 2010 Aug; 2(4):173-5. PubMed ID: 20123700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.
    Patil V; Jain V
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31285242
    [No Abstract]   [Full Text] [Related]  

  • 9. Redox-guided small molecule antimycobacterials.
    Kulkarni A; Sharma AK; Chakrapani H
    IUBMB Life; 2018 Sep; 70(9):826-835. PubMed ID: 29761645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of pathogenic bacteria and opportunities for drug development.
    Cook GM; Greening C; Hards K; Berney M
    Adv Microb Physiol; 2014; 65():1-62. PubMed ID: 25476763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting tuberculosis: a glimpse of promising drug targets.
    Arora N; Banerjee AK
    Mini Rev Med Chem; 2012 Mar; 12(3):187-201. PubMed ID: 22356190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis.
    Zhang YJ; Li XJ; Mi KX
    Yi Chuan; 2016 Oct; 38(10):918-927. PubMed ID: 27806933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the cytochrome oxidases for drug development in mycobacteria.
    Lee BS; Sviriaeva E; Pethe K
    Prog Biophys Mol Biol; 2020 May; 152():45-54. PubMed ID: 32081616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery.
    de Wet TJ; Warner DF; Mizrahi V
    Acc Chem Res; 2019 Aug; 52(8):2340-2348. PubMed ID: 31361123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Antimicrobials from Uncultured Bacteria Acting against Mycobacterium tuberculosis.
    Quigley J; Peoples A; Sarybaeva A; Hughes D; Ghiglieri M; Achorn C; Desrosiers A; Felix C; Liang L; Malveira S; Millett W; Nitti A; Tran B; Zullo A; Anklin C; Spoering A; Ling LL; Lewis K
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753498
    [No Abstract]   [Full Text] [Related]  

  • 16. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening.
    Manjunatha UH; Smith PW
    Bioorg Med Chem; 2015 Aug; 23(16):5087-97. PubMed ID: 25577708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting the synthetic lethality between terminal respiratory oxidases to kill
    Kalia NP; Hasenoehrl EJ; Ab Rahman NB; Koh VH; Ang MLT; Sajorda DR; Hards K; Grüber G; Alonso S; Cook GM; Berney M; Pethe K
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7426-7431. PubMed ID: 28652330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents.
    Evans JC; Mizrahi V
    Curr Opin Microbiol; 2018 Oct; 45():39-46. PubMed ID: 29482115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Signal transduction and drug resistance in Mycobacterium tuberculosis--A review].
    Wang S; Feng Y; Zhang Z
    Wei Sheng Wu Xue Bao; 2015 Aug; 55(8):971-6. PubMed ID: 26665593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.