These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 28597877)

  • 21. Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries.
    Wong LL; Chen H; Adams S
    Phys Chem Chem Phys; 2017 Mar; 19(11):7506-7523. PubMed ID: 28246664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage.
    Wessells CD; McDowell MT; Peddada SV; Pasta M; Huggins RA; Cui Y
    ACS Nano; 2012 Feb; 6(2):1688-94. PubMed ID: 22283739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium vanadium oxide: a new material for high-performance symmetric sodium-ion batteries.
    Hartung S; Bucher N; Nair VS; Ling CY; Wang Y; Hoster HE; Srinivasan M
    Chemphyschem; 2014 Jul; 15(10):2121-8. PubMed ID: 25044526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries.
    Wu F; Zhang X; Zhao T; Li L; Xie M; Chen R
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3773-81. PubMed ID: 25629768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrothermal-assisted synthesis of the Na7V4(P2O7)4(PO4)/C nanorod and its fast sodium intercalation chemistry in aqueous rechargeable sodium batteries.
    Deng C; Zhang S; Wu Y
    Nanoscale; 2015 Jan; 7(2):487-91. PubMed ID: 25407134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Acid in Tailoring Prussian Blue as Cathode for High-Performance Sodium-Ion Battery.
    Liu Y; Wei G; Ma M; Qiao Y
    Chemistry; 2017 Nov; 23(63):15991-15996. PubMed ID: 28885739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bismuth Nanoparticles Embedded in Carbon Spheres as Anode Materials for Sodium/Lithium-Ion Batteries.
    Yang F; Yu F; Zhang Z; Zhang K; Lai Y; Li J
    Chemistry; 2016 Feb; 22(7):2333-8. PubMed ID: 26757402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries.
    Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries.
    Fan L; Lu B
    Small; 2016 May; 12(20):2783-91. PubMed ID: 27061155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cubic KTi2(PO4)3 as electrode materials for sodium-ion batteries.
    Han J; Xu M; Niu Y; Jia M; Liu T; Li CM
    J Colloid Interface Sci; 2016 Dec; 483():67-72. PubMed ID: 27552414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the High-Voltage Li2FeMn3O8 Cathode by Chlorine Doping.
    Dai J; Zhou L; Han X; Carter M; Hu L
    ACS Appl Mater Interfaces; 2016 May; 8(17):10820-5. PubMed ID: 27046350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries.
    Peng M; Li B; Yan H; Zhang D; Wang X; Xia D; Guo G
    Angew Chem Int Ed Engl; 2015 May; 54(22):6452-6. PubMed ID: 25864686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries.
    Liu J; Tang K; Song K; van Aken PA; Yu Y; Maier J
    Nanoscale; 2014 May; 6(10):5081-6. PubMed ID: 24595960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphology-controlled synthesis of self-assembled LiFePO4/C/RGO for high-performance Li-ion batteries.
    Lin M; Chen Y; Chen B; Wu X; Kam K; Lu W; Chan HL; Yuan J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17556-63. PubMed ID: 25233480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly stable Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 cathode modified by atomic layer deposition for sodium-ion batteries.
    Kaliyappan K; Liu J; Lushington A; Li R; Sun X
    ChemSusChem; 2015 Aug; 8(15):2537-43. PubMed ID: 26119638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries.
    Wang HG; Ma DL; Huang Y; Zhang XB
    Chemistry; 2012 Jul; 18(29):8987-93. PubMed ID: 22689094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.
    Casado N; Hilder M; Pozo-Gonzalo C; Forsyth M; Mecerreyes D
    ChemSusChem; 2017 Apr; 10(8):1783-1791. PubMed ID: 28198593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. P2-NaCo(0.5)Mn(0.5)O2 as a Positive Electrode Material for Sodium-Ion Batteries.
    Yang P; Zhang C; Li M; Yang X; Wang C; Bie X; Wei Y; Chen G; Du F
    Chemphyschem; 2015 Nov; 16(16):3408-12. PubMed ID: 26333871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Method of Designing Stable Layered Cathode Material for Sodium Ion Batteries Using Aluminum Doping.
    Ramasamy HV; Kaliyappan K; Thangavel R; Seong WM; Kang K; Chen Z; Lee YS
    J Phys Chem Lett; 2017 Oct; 8(20):5021-5030. PubMed ID: 28915055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.