These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2859795)

  • 1. Beta blockers and exercise: physiologic and biochemical definitions and new concepts.
    Harrison DC
    Am J Cardiol; 1985 Apr; 55(10):29D-33D. PubMed ID: 2859795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exfoliation of the beta-adrenergic receptor and the regulatory components of adenylate cyclase by cultured rat glioma C6 cells.
    Kassis S; Lauter CJ; Stojanov M; Salem N
    Biochim Biophys Acta; 1986 May; 886(3):474-82. PubMed ID: 2871868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical physiology of adrenergic receptor regulation.
    Lefkowitz RJ
    Am J Physiol; 1982 Jul; 243(1):E43-7. PubMed ID: 6124130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of beta-blockade on beta-adrenergic receptors and signal transduction.
    Karliner JS
    J Cardiovasc Pharmacol; 1989; 14 Suppl 5():S6-12. PubMed ID: 2478812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-adrenergic signal transduction following carvedilol treatment in hypertensive cardiac hypertrophy.
    Böhm M; Ettelbrück S; Flesch M; van Gilst WH; Knorr A; Maack C; Pinto YM; Paul M; Teisman AC; Zolk O
    Cardiovasc Res; 1998 Oct; 40(1):146-55. PubMed ID: 9876327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of GTP on the coupling of beta-adrenergic receptors to adenylate cyclase from frog and turkey erythrocytes. Application of new methods for the analysis of receptor-effector coupling.
    Limbird LE; DeLean A; Hickey AR; Pike LJ; Lefkowitz RJ
    Biochim Biophys Acta; 1979 Aug; 586(2):298-314. PubMed ID: 224939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of acute ischemia in the dog on myocardial blood flow, beta receptors, and adenylate cyclase activity with and without chronic beta blockade.
    Karliner JS; Stevens MB; Honbo N; Hoffman JI
    J Clin Invest; 1989 Feb; 83(2):474-81. PubMed ID: 2563265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GTP and Na+ modulate receptor-adenyl cyclase coupling and receptor-mediated function.
    Limbird LE
    Am J Physiol; 1984 Jul; 247(1 Pt 1):E59-68. PubMed ID: 6146263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endurance training, not acute exercise, differentially alters beta-receptors and cyclase in skeletal fiber types.
    Buckenmeyer PJ; Goldfarb AH; Partilla JS; Piñeyro MA; Dax EM
    Am J Physiol; 1990 Jan; 258(1 Pt 1):E71-7. PubMed ID: 2154119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-adrenoceptor blocker treatment and the cardiac beta-adrenoceptor-G-protein(s)-adenylyl cyclase system in chronic heart failure.
    Brodde OE
    Naunyn Schmiedebergs Arch Pharmacol; 2007 Feb; 374(5-6):361-72. PubMed ID: 17216434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential inhibition of beta adrenergic receptors in human and rabbit ciliary process and heart.
    Nathanson JA
    J Pharmacol Exp Ther; 1985 Jan; 232(1):119-26. PubMed ID: 2856938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The beta-adrenergic receptor-adenylate cyclase complex as a target for therapeutic intervention in heart failure.
    Bristow MR; Port JD; Hershberger RE; Gilbert EM; Feldman AM
    Eur Heart J; 1989 Jun; 10 Suppl B():45-54. PubMed ID: 2572420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.
    Ugur O; Onaran HO
    Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):765-76. PubMed ID: 9169611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenylate cyclase agonist properties of CGP-12177A in brown fat: evidence for atypical beta-adrenergic receptors.
    Scarpace PJ; Matheny M
    Am J Physiol; 1991 Feb; 260(2 Pt 1):E226-31. PubMed ID: 1671733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation/dephosphorylation of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution.
    Sibley DR; Strasser RH; Benovic JL; Daniel K; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 1986 Dec; 83(24):9408-12. PubMed ID: 3025843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diminished beta-adrenergic modulation of cardiovascular function in advanced age.
    Lakatta EG
    Cardiol Clin; 1986 May; 4(2):185-200. PubMed ID: 2871934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-adrenergic receptors: biochemical mechanisms of physiological regulation.
    Stiles GL; Caron MG; Lefkowitz RJ
    Physiol Rev; 1984 Apr; 64(2):661-743. PubMed ID: 6143332
    [No Abstract]   [Full Text] [Related]  

  • 18. Molecular mechanisms of adenylyl cyclase desensitization in pregnant rat myometrium following in vivo administration of the beta-adrenergic agonist, isoproterenol.
    Lécrivain JL; Cohen-Tannoudji J; Robin MT; Coudouel N; Legrand C; Maltier JP
    Biol Reprod; 1998 Jul; 59(1):45-52. PubMed ID: 9674992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental difference between the molecular interactions of agonists and antagonists with the beta-adrenergic receptor.
    Weiland GA; Minneman KP; Molinoff PB
    Nature; 1979 Sep; 281(5727):114-7. PubMed ID: 38405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choice of selective versus nonselective beta blockers: implications for exercise training.
    Kelly JG
    Am J Cardiol; 1985 Apr; 55(10):162D-166D. PubMed ID: 2859793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.