These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28598152)

  • 1. Continuous-Ink, Multiplexed Pen-Plotter Approach for Low-Cost, High-Throughput Fabrication of Paper-Based Microfluidics.
    Amin R; Ghaderinezhad F; Li L; Lepowsky E; Yenilmez B; Knowlton S; Tasoglu S
    Anal Chem; 2017 Jun; 89(12):6351-6357. PubMed ID: 28598152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.
    Nuchtavorn N; Macka M
    Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pushing the Limits of Spatial Assay Resolution for Paper-Based Microfluidics Using Low-Cost and High-Throughput Pen Plotter Approach.
    Amin R; Ghaderinezhad F; Bridge C; Temirel M; Jones S; Toloueinia P; Tasoglu S
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32599882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput rapid-prototyping of low-cost paper-based microfluidics.
    Ghaderinezhad F; Amin R; Temirel M; Yenilmez B; Wentworth A; Tasoglu S
    Sci Rep; 2017 Jun; 7(1):3553. PubMed ID: 28620167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput deposition of chemical reagents via pen-plotting technique for microfluidic paper-based analytical devices.
    Rahbar M; Nesterenko PN; Paull B; Macka M
    Anal Chim Acta; 2019 Jan; 1047():115-123. PubMed ID: 30567641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper.
    Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM
    Talanta; 2015 Nov; 144():289-93. PubMed ID: 26452824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of paper-based microfluidic sensors by printing.
    Li X; Tian J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wax screen-printable ink for massive fabrication of negligible-to-nil cost fabric-based microfluidic (bio)sensing devices for colorimetric analysis of sweat.
    Tzianni EI; Sakkas VA; Prodromidis MI
    Talanta; 2024 Mar; 269():125475. PubMed ID: 38039670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprint of 'Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper'.
    Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM
    Talanta; 2015 Dec; 145():73-7. PubMed ID: 26459446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-based alkyl ketene dimer ink for user-friendly patterning in paper microfluidics.
    Hamidon NN; Hong Y; Salentijn GI; Verpoorte E
    Anal Chim Acta; 2018 Feb; 1000():180-190. PubMed ID: 29289307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing.
    Lu Y; Shi W; Qin J; Lin B
    Anal Chem; 2010 Jan; 82(1):329-35. PubMed ID: 20000582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor.
    Li Z; Li F; Xing Y; Liu Z; You M; Li Y; Wen T; Qu Z; Ling Li X; Xu F
    Biosens Bioelectron; 2017 Dec; 98():478-485. PubMed ID: 28728008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost fabrication of paper-based microfluidic devices by one-step plotting.
    Nie J; Zhang Y; Lin L; Zhou C; Li S; Zhang L; Li J
    Anal Chem; 2012 Aug; 84(15):6331-5. PubMed ID: 22881397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paper-based inkjet-printed microfluidic analytical devices.
    Yamada K; Henares TG; Suzuki K; Citterio D
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5294-310. PubMed ID: 25864471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.
    Wu P; Zhang C
    Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing.
    Dungchai W; Chailapakul O; Henry CS
    Analyst; 2011 Jan; 136(1):77-82. PubMed ID: 20871884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices.
    Sitanurak J; Fukana N; Wongpakdee T; Thepchuay Y; Ratanawimarnwong N; Amornsakchai T; Nacapricha D
    Talanta; 2019 Dec; 205():120113. PubMed ID: 31450420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.