BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 28598576)

  • 1. Semi-automated cancer genome analysis using high-performance computing.
    Crispatzu G; Kulkarni P; Toliat MR; Nürnberg P; Herling M; Herling CD; Frommolt P
    Hum Mutat; 2017 Oct; 38(10):1325-1335. PubMed ID: 28598576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QuickNGS elevates Next-Generation Sequencing data analysis to a new level of automation.
    Wagle P; Nikolić M; Frommolt P
    BMC Genomics; 2015 Jul; 16(1):487. PubMed ID: 26126663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NGS_SNPAnalyzer: a desktop software supporting genome projects by identifying and visualizing sequence variations from next-generation sequencing data.
    Lee DJ; Kwon T; Kim CK; Seol YJ; Park DS; Lee TH; Ahn BO
    Genes Genomics; 2020 Nov; 42(11):1311-1317. PubMed ID: 32980993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group-based variant calling leveraging next-generation supercomputing for large-scale whole-genome sequencing studies.
    Standish KA; Carland TM; Lockwood GK; Pfeiffer W; Tatineni M; Huang CC; Lamberth S; Cherkas Y; Brodmerkel C; Jaeger E; Smith L; Rajagopal G; Curran ME; Schork NJ
    BMC Bioinformatics; 2015 Sep; 16(1):304. PubMed ID: 26395405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ASEQ: fast allele-specific studies from next-generation sequencing data.
    Romanel A; Lago S; Prandi D; Sboner A; Demichelis F
    BMC Med Genomics; 2015 Mar; 8():9. PubMed ID: 25889339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Overview of DNA Analytical Methods.
    Arboleda VA; Xian RR
    Methods Mol Biol; 2019; 1897():385-402. PubMed ID: 30539459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.
    Dunn JG; Weissman JS
    BMC Genomics; 2016 Nov; 17(1):958. PubMed ID: 27875984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of alignment and SNP calling algorithms for next-generation sequencing data.
    Mielczarek M; Szyda J
    J Appl Genet; 2016 Feb; 57(1):71-9. PubMed ID: 26055432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NEAT: a framework for building fully automated NGS pipelines and analyses.
    Schorderet P
    BMC Bioinformatics; 2016 Feb; 17():53. PubMed ID: 26830846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iRODS metadata management for a cancer genome analysis workflow.
    Nieroda L; Maas L; Thiebes S; Lang U; Sunyaev A; Achter V; Peifer M
    BMC Bioinformatics; 2019 Jan; 20(1):29. PubMed ID: 30646845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HGT-ID: an efficient and sensitive workflow to detect human-viral insertion sites using next-generation sequencing data.
    Baheti S; Tang X; O'Brien DR; Chia N; Roberts LR; Nelson H; Boughey JC; Wang L; Goetz MP; Kocher JA; Kalari KR
    BMC Bioinformatics; 2018 Jul; 19(1):271. PubMed ID: 30016933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges in exome analysis by LifeScope and its alternative computational pipelines.
    Pranckevičiene E; Rančelis T; Pranculis A; Kučinskas V
    BMC Res Notes; 2015 Sep; 8():421. PubMed ID: 26346699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SEQprocess: a modularized and customizable pipeline framework for NGS processing in R package.
    Joo T; Choi JH; Lee JH; Park SE; Jeon Y; Jung SH; Woo HG
    BMC Bioinformatics; 2019 Feb; 20(1):90. PubMed ID: 30786880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. INDELseek: detection of complex insertions and deletions from next-generation sequencing data.
    Au CH; Leung AY; Kwong A; Chan TL; Ma ES
    BMC Genomics; 2017 Jan; 18(1):16. PubMed ID: 28056804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive fundamental somatic variant calling and quality management strategies for human cancer genomes.
    He X; Chen S; Li R; Han X; He Z; Yuan D; Zhang S; Duan X; Niu B
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32510555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TOGGLE: toolbox for generic NGS analyses.
    Monat C; Tranchant-Dubreuil C; Kougbeadjo A; Farcy C; Ortega-Abboud E; Amanzougarene S; Ravel S; Agbessi M; Orjuela-Bouniol J; Summo M; Sabot F
    BMC Bioinformatics; 2015 Nov; 16():374. PubMed ID: 26552596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of cancer next-generation sequencing testing in a community hospital.
    Akkari Y; Smith T; Westfall J; Lupo S
    Cold Spring Harb Mol Case Stud; 2019 Jun; 5(3):. PubMed ID: 31160354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A framework for organizing cancer-related variations from existing databases, publications and NGS data using a High-performance Integrated Virtual Environment (HIVE).
    Wu TJ; Shamsaddini A; Pan Y; Smith K; Crichton DJ; Simonyan V; Mazumder R
    Database (Oxford); 2014; 2014():bau022. PubMed ID: 24667251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics Data Analysis of Next-Generation Sequencing Data from Heterogeneous Tumor Samples.
    Landman SR; Hwang TH
    Methods Mol Biol; 2017; 1633():185-192. PubMed ID: 28735488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMLVaran: a software approach to implement variant analysis of targeted NGS sequencing data in an oncological care setting.
    Wünsch C; Banck H; Müller-Tidow C; Dugas M
    BMC Med Genomics; 2020 Feb; 13(1):17. PubMed ID: 32019565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.