These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28598647)

  • 1. Role of the Intercrystalline Tie Chains Network in the Mechanical Response of Semicrystalline Polymers.
    Jabbari-Farouji S; Lame O; Perez M; Rottler J; Barrat JL
    Phys Rev Lett; 2017 May; 118(21):217802. PubMed ID: 28598647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of structure and mechanical response in solid-like polymers.
    Jabbari-Farouji S; Rottler J; Lame O; Makke A; Perez M; Barrat JL
    J Phys Condens Matter; 2015 May; 27(19):194131. PubMed ID: 25923991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastic Deformation Mechanisms of Semicrystalline and Amorphous Polymers.
    Jabbari-Farouji S; Rottler J; Lame O; Makke A; Perez M; Barrat JL
    ACS Macro Lett; 2015 Feb; 4(2):147-150. PubMed ID: 35596422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers.
    Men Y; Rieger J; Strobl G
    Phys Rev Lett; 2003 Aug; 91(9):095502. PubMed ID: 14525194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compression-induced anti-nematic order in glassy and semicrystalline polymers.
    Jabbari-Farouji S; Vandembroucq D
    Soft Matter; 2020 Jan; 16(1):102-106. PubMed ID: 31793978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Method for Semicrystalline Polymers Controlling Aspects of the Morphology at the Molecular Scale for the Study of Mechanical and Physicochemical Properties.
    Belin B; Yiannourakou M; Lachet V; Rousseau B
    J Phys Chem B; 2022 Nov; 126(46):9673-9685. PubMed ID: 36374206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Huang-Brown Description of Tie Chains for Charge Transport in Conjugated Polymers.
    Gu K; Snyder CR; Onorato J; Luscombe CK; Bosse AW; Loo YL
    ACS Macro Lett; 2018 Nov; 7(11):1333-1338. PubMed ID: 35651239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chain Trajectory, Chain Packing, and Molecular Dynamics of Semicrystalline Polymers as Studied by Solid-State NMR.
    Wang S; Hong YL; Yuan S; Chen W; Zhou W; Li Z; Wang K; Min X; Konishi T; Miyoshi T
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chain stiffness and entanglements on the elastic behavior of end-linked elastomers.
    Bhawe DM; Cohen C; Escobedo FA
    J Chem Phys; 2005 Jul; 123(1):014909. PubMed ID: 16035871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Tie-Molecules and Microstructure on the Fluid Solubility in Semicrystalline Polymers.
    Valsecchi M; Ramadani J; Williams D; Galindo A; Jackson G
    J Phys Chem B; 2022 Nov; 126(44):9059-9088. PubMed ID: 36318751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microscopic insight into the deformation behavior of semicrystalline polymers: the role of phase transitions.
    De Rosa C; Auriemma F; Ruiz de Ballesteros O
    Phys Rev Lett; 2006 Apr; 96(16):167801. PubMed ID: 16712276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-dependent localization, microscopic deformations, and macroscopic normal tensions in model polymer networks.
    Svaneborg C; Grest GS; Everaers R
    Phys Rev Lett; 2004 Dec; 93(25):257801. PubMed ID: 15697942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of polymer welding: strength from interfacial entanglements.
    Ge T; Pierce F; Perahia D; Grest GS; Robbins MO
    Phys Rev Lett; 2013 Mar; 110(9):098301. PubMed ID: 23496750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of statistics of ties, loops, and tails in semicrystalline polymers.
    Adhikari S; Muthukumar M
    J Chem Phys; 2019 Sep; 151(11):114905. PubMed ID: 31542015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling polymer grafted nanoparticle networks reinforced by high-strength chains.
    Hamer MJ; Iyer BV; Yashin VV; Kowalewski T; Matyjaszewski K; Balazs AC
    Soft Matter; 2014 Mar; 10(9):1374-83. PubMed ID: 24652523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture in glassy polymers: a molecular modeling perspective.
    Rottler J
    J Phys Condens Matter; 2009 Nov; 21(46):463101. PubMed ID: 21715863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonaffine rubber elasticity for stiff polymer networks.
    Heussinger C; Schaefer B; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031906. PubMed ID: 17930270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study of imperfect networks using a coarse-grained model.
    Sliozberg YR; Chantawansri TL
    J Chem Phys; 2013 Nov; 139(19):194904. PubMed ID: 24320352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased molecular mobility in humid silk fibers under tensile stress.
    Seydel T; Knoll W; Greving I; Dicko C; Koza MM; Krasnov I; Müller M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016104. PubMed ID: 21405741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of entanglements during the response to a uniaxial deformation of lamellar triblock copolymers and polymer glasses.
    Léonforte F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041802. PubMed ID: 21230303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.