BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28598950)

  • 1. Drill-induced Cochlear Injury During Otologic Surgery: Intracochlear Pressure Evidence of Acoustic Trauma.
    Banakis Hartl RM; Mattingly JK; Greene NT; Farrell NF; Gubbels SP; Tollin DJ
    Otol Neurotol; 2017 Aug; 38(7):938-947. PubMed ID: 28598950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivalent noise level generated by drilling onto the ossicular chain as measured by laser Doppler vibrometry: a temporal bone study.
    Jiang D; Bibas A; Santuli C; Donnelly N; Jeronimidis G; O'Connor AF
    Laryngoscope; 2007 Jun; 117(6):1040-5. PubMed ID: 17545867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracochlear pressure measurements during acoustic shock wave exposure.
    Greene NT; Alhussaini MA; Easter JR; Argo TF; Walilko T; Tollin DJ
    Hear Res; 2018 Aug; 365():149-164. PubMed ID: 29843947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT; Mattingly JK; Jenkins HA; Tollin DJ; Easter JR; Cass SP
    Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creation of an incus recess for a middle-ear microphone using a drill or laser ablation: a comparison of equivalent noise level and middle ear transfer function.
    Morse RP; Mitchell-Innes A; Prokopiou AN; Irving RM; Begg PA
    Eur Arch Otorhinolaryngol; 2023 Feb; 280(2):661-669. PubMed ID: 35834014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation.
    Pau HW; Just T; Bornitz M; Lasurashvilli N; Zahnert T
    Laryngoscope; 2007 Mar; 117(3):535-40. PubMed ID: 17334318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the noise generated by otological electrical drills and suction during cadaver surgery.
    Yin X; Strömberg AK; Duan M
    Acta Otolaryngol; 2011 Nov; 131(11):1132-5. PubMed ID: 21756022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The atretic plate--a conduit for drill vibration to the inner ear?
    Eze N; Jiang D; O'Connor AF
    Acta Otolaryngol; 2014 Jan; 134(1):14-8. PubMed ID: 24256047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracochlear pressure in response to high intensity, low frequency sounds in chinchilla.
    Peacock J; Al Hussaini M; Greene NT; Tollin DJ
    Hear Res; 2018 Sep; 367():213-222. PubMed ID: 29945804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Preliminary Investigation of the Air-Bone Gap: Changes in Intracochlear Sound Pressure With Air- and Bone-conducted Stimuli After Cochlear Implantation.
    Banakis Hartl RM; Mattingly JK; Greene NT; Jenkins HA; Cass SP; Tollin DJ
    Otol Neurotol; 2016 Oct; 37(9):1291-9. PubMed ID: 27579835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Skin Thickness on Cochlear Input Signal Using Transcutaneous Bone Conduction Implants.
    Mattingly JK; Greene NT; Jenkins HA; Tollin DJ; Easter JR; Cass SP
    Otol Neurotol; 2015 Sep; 36(8):1403-11. PubMed ID: 26164446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standardized Active Middle-Ear Implant Coupling to the Short Incus Process.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Rak K; Radeloff A; Hagen R; Gummer AW; Schraven SP
    Otol Neurotol; 2015 Sep; 36(8):1390-8. PubMed ID: 26247138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risks of Intracochlear Pressures From Laser Stapedotomy.
    Misch ES; Banakis Hartl RM; Gubbels SP; Greene NT
    Otol Neurotol; 2020 Mar; 41(3):308-317. PubMed ID: 31746814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracochlear Pressures in Simulated Otitis Media With Effusion: A Temporal Bone Study.
    Alhussaini MA; Banakis Hartl RM; Benichoux V; Tollin DJ; Jenkins HA; Greene NT
    Otol Neurotol; 2018 Aug; 39(7):e585-e592. PubMed ID: 29912830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Techniques to improve the efficiency of a middle ear implant: effect of different methods of coupling to the ossicular chain.
    Devèze A; Koka K; Tringali S; Jenkins HA; Tollin DJ
    Otol Neurotol; 2013 Jan; 34(1):158-66. PubMed ID: 23196747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occluded insertion loss from intracochlear pressure measurements during acoustic shock wave exposure.
    Anderson DA; Argo TF; Greene NT
    Hear Res; 2023 Feb; 428():108669. PubMed ID: 36565603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.