These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28599108)

  • 1. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers.
    Song B; Yao Y; Groenewald RE; Wang Y; Liu H; Wang Y; Li Y; Liu F; Cronin SB; Schwartzberg AM; Cabrini S; Haas S; Wu W
    ACS Nano; 2017 Jun; 11(6):5836-5843. PubMed ID: 28599108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic dye-sensitized solar cells through collapsible gold nanofingers.
    Fang W; Hu P; Wu Z; Xiao Y; Sui Y; Pan D; Su G; Zhu M; Zhan P; Liu F; Wu W
    Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34034240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision.
    Song B; Jiang Z; Liu Z; Wang Y; Liu F; Cronin SB; Yang H; Meng D; Chen B; Hu P; Schwartzberg AM; Cabrini S; Haas S; Wu W
    ACS Nano; 2020 Nov; 14(11):14769-14778. PubMed ID: 33095557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.
    Yang L; Wang H; Fang Y; Li Z
    ACS Nano; 2016 Jan; 10(1):1580-8. PubMed ID: 26700823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation.
    Hajisalem G; Nezami MS; Gordon R
    Nano Lett; 2014 Nov; 14(11):6651-4. PubMed ID: 25322471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime.
    Kim JY; Kang BJ; Park J; Bahk YM; Kim WT; Rhie J; Jeon H; Rotermund F; Kim DS
    Nano Lett; 2015 Oct; 15(10):6683-8. PubMed ID: 26372787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range.
    Cha H; Yoon JH; Yoon S
    ACS Nano; 2014 Aug; 8(8):8554-63. PubMed ID: 25089844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Plasmonics: Energy Transport Through Plasmonic Gap.
    Lee J; Jeon DJ; Yeo JS
    Adv Mater; 2021 Nov; 33(47):e2006606. PubMed ID: 33891781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fowler-Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles.
    Wu L; Duan H; Bai P; Bosman M; Yang JK; Li E
    ACS Nano; 2013 Jan; 7(1):707-16. PubMed ID: 23215253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevating Surface-Enhanced Infrared Absorption with Quantum Mechanical Effects of Plasmonic Nanocavities.
    Huang G; Liu K; Shi G; Guo Q; Li X; Liu Z; Ma W; Wang T
    Nano Lett; 2022 Aug; 22(15):6083-6090. PubMed ID: 35866846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sculpting Extreme Electromagnetic Field Enhancement in Free Space for Molecule Sensing.
    Liu F; Song B; Su G; Liang O; Zhan P; Wang H; Wu W; Xie Y; Wang Z
    Small; 2018 Jul; ():e1801146. PubMed ID: 30003669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalously Large Spectral Shifts near the Quantum Tunnelling Limit in Plasmonic Rulers with Subatomic Resolution.
    Readman C; de Nijs B; Szabó I; Demetriadou A; Greenhalgh R; Durkan C; Rosta E; Scherman OA; Baumberg JJ
    Nano Lett; 2019 Mar; 19(3):2051-2058. PubMed ID: 30726095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely large third-order nonlinear optical effects caused by electron transport in quantum plasmonic metasurfaces with subnanometer gaps.
    Takeuchi T; Yabana K
    Sci Rep; 2020 Dec; 10(1):21270. PubMed ID: 33277512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunneling Plasmonics in Bilayer Graphene.
    Fei Z; Iwinski EG; Ni GX; Zhang LM; Bao W; Rodin AS; Lee Y; Wagner M; Liu MK; Dai S; Goldflam MD; Thiemens M; Keilmann F; Lau CN; Castro-Neto AH; Fogler MM; Basov DN
    Nano Lett; 2015 Aug; 15(8):4973-8. PubMed ID: 26222509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer.
    Lin L; Zapata M; Xiong M; Liu Z; Wang S; Xu H; Borisov AG; Gu H; Nordlander P; Aizpurua J; Ye J
    Nano Lett; 2015 Oct; 15(10):6419-28. PubMed ID: 26375710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical field enhancement by strong plasmon interaction in graphene nanostructures.
    Thongrattanasiri S; García de Abajo FJ
    Phys Rev Lett; 2013 May; 110(18):187401. PubMed ID: 23683241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the Nanogap with Light: Continuous Tuning of Plasmon Coupling between Gold Nanoparticles.
    Jung H; Cha H; Lee D; Yoon S
    ACS Nano; 2015 Dec; 9(12):12292-300. PubMed ID: 26467291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of Wavelength-Dependent Quantum Plasmon Tunneling with Varying the Thickness of Graphene Spacer.
    Lee KJ; Kim S; Hong W; Park H; Jang MS; Yu K; Choi SY
    Sci Rep; 2019 Feb; 9(1):1199. PubMed ID: 30718711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How To Identify Plasmons from the Optical Response of Nanostructures.
    Zhang R; Bursi L; Cox JD; Cui Y; Krauter CM; Alabastri A; Manjavacas A; Calzolari A; Corni S; Molinari E; Carter EA; García de Abajo FJ; Zhang H; Nordlander P
    ACS Nano; 2017 Jul; 11(7):7321-7335. PubMed ID: 28651057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Modeling of Plasmon-Enhanced Raman Images of a Single Molecule with Subnanometer Resolution.
    Duan S; Tian G; Ji Y; Shao J; Dong Z; Luo Y
    J Am Chem Soc; 2015 Aug; 137(30):9515-8. PubMed ID: 26186284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.