These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2859911)

  • 1. Cellular localization of MAO A and B in brain: evidence from kainic acid lesions in striatum.
    Francis A; Pearce LB; Roth JA
    Brain Res; 1985 May; 334(1):59-64. PubMed ID: 2859911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in striatal neuron-specific enolase (NSE) and non-neuronal enolase (NNE) following kainic acid administration.
    Zis AP; Marangos PJ; Parma AM; McGeer EG
    Brain Res; 1980 Feb; 183(2):486-9. PubMed ID: 7353155
    [No Abstract]   [Full Text] [Related]  

  • 3. Activity of neuron-specific enolase in normal and lesioned rat brain.
    Francis A; Rivett AJ; Roth JA
    Brain Res; 1983 Mar; 263(1):89-95. PubMed ID: 6132669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of intrastriatal kainic acid injection on [3H]dopamine metabolism in rat striatal slices: evidence for postsynaptic glial cell metabolism by both the type A and B forms of monoamine oxidase.
    Schoepp DD; Azzaro AJ
    J Neurochem; 1983 May; 40(5):1340-8. PubMed ID: 6131940
    [No Abstract]   [Full Text] [Related]  

  • 5. Neuron-specific enolase in cerebrospinal fluid: a possible indicator of neuronal damage in kainic acid lesions.
    Steinberg R; Scarna H; Pujol JF
    Neurosci Lett; 1984 Mar; 45(2):147-50. PubMed ID: 6728310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of rat striatal monoamine oxidase activities towards dopamine, serotonin and kynuramine by gradient centrifugation and nigro-striatal lesions.
    Van der Krogt JA; Koot-Gronsveld E; Van den Berg CJ
    Life Sci; 1983 Aug; 33(7):615-23. PubMed ID: 6877035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct cellular localization of membrane-bound and soluble forms of catechol-O-methyltransferase in brain.
    Rivett AJ; Francis A; Roth JA
    J Neurochem; 1983 Jan; 40(1):215-9. PubMed ID: 6848660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some factors influencing the neurotoxicity of intrastriatal injections of kainic acid.
    McGeer EG; McGeer PL
    Neurochem Res; 1978 Aug; 3(4):501-17. PubMed ID: 34114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of monoamine oxidases A and B in primate brains relative to neuron-specific and non-neuronal enolases.
    Campbell IC; Marangos PJ; Parma A; Garrick NA; Murphy DL
    Neurochem Res; 1982 Jun; 7(6):657-66. PubMed ID: 7121716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decrease of glutamate decarboxylase (GAD)-immunoreactive nerve terminals in the substantia nigra after kainic acid lesion of the striatum.
    Oertel WH; Schmechel DE; Brownstein MJ; Tappaz ML; Ransom DH; Kopin IJ
    J Histochem Cytochem; 1981 Aug; 29(8):977-80. PubMed ID: 7024401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+/calmodulin-dependent phosphoprotein phosphatase activity of calcineurin in rat striatum: effect of kainic acid lesions.
    Chung E; Li HC; Van Woert MH; Chan WS
    Neuropharmacology; 1987 Jun; 26(6):633-6. PubMed ID: 3037426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfate conjugation of dopamine in rat brain: regional distribution of activity and evidence for neuronal localization.
    Rivett AJ; Francis A; Whittemore R; Roth JA
    J Neurochem; 1984 May; 42(5):1444-9. PubMed ID: 6584547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamic acid decarboxylase mRNA in rat brain: regional distribution and effects of intrastriatal kainic acid.
    Kim YS; Thomas JW; Tillakaratne NJ; Montpied P; Suzdak PD; Banner C; Ginns E; Tobin AJ; Paul SM
    Brain Res; 1987 Dec; 427(1):77-82. PubMed ID: 2448011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of short- and long-term ganglioside treatment on the recovery of neurochemical markers in the ibotenic acid-lesioned rat striatum.
    Contestabile A; Virgili M; Migani P; Barnabei O
    J Neurosci Res; 1990 Aug; 26(4):483-7. PubMed ID: 1977926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inhibition of glutamine synthetase in rat corpus striatum in vitro by methionine sulfoximine increases the neurotoxic effects of kainate and N-methyl-D-aspartate.
    Kollegger H; McBean GJ; Tipton KF
    Neurosci Lett; 1991 Sep; 130(1):95-8. PubMed ID: 1684236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A subpopulation of mouse striatal cholinergic neurons show monoamine oxidase activity.
    Nakamura S; Akiguchi I; Kimura J
    Neurosci Lett; 1993 Oct; 161(2):141-4. PubMed ID: 8272255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective inhibition of monoamine oxidase A or B reduces striatal oxidative stress in rats with partial depletion of the nigro-striatal dopaminergic pathway.
    Aluf Y; Vaya J; Khatib S; Loboda Y; Finberg JP
    Neuropharmacology; 2013 Feb; 65():48-57. PubMed ID: 22982254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commonly used L-amino acid decarboxylase inhibitors block monoamine oxidase activity in the rat.
    Treseder SA; Rose S; Summo L; Jenner P
    J Neural Transm (Vienna); 2003 Mar; 110(3):229-38. PubMed ID: 12658372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrahippocampal kainic acid reduces glutamine synthetase.
    Waniewski RA; McFarland D
    Neuroscience; 1990; 34(2):305-10. PubMed ID: 1970631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aromatic L-amino acid decarboxylase in rat corpus striatum: implications for action of L-dopa in parkinsonism.
    Melamed E; Hefti F; Pettibone DJ; Liebman J; Wurtman RJ
    Neurology; 1981 Jun; 31(6):651-5. PubMed ID: 7195482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.