These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 28599153)

  • 1. Effects of repeated biaxial loads on the creep properties of cardinal ligaments.
    Baah-Dwomoh A; De Vita R
    J Mech Behav Biomed Mater; 2017 Oct; 74():128-141. PubMed ID: 28599153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-structural and Biaxial Creep Properties of the Swine Uterosacral-Cardinal Ligament Complex.
    Tan T; Cholewa NM; Case SW; De Vita R
    Ann Biomed Eng; 2016 Nov; 44(11):3225-3237. PubMed ID: 27256362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Analysis of the Uterosacral Ligament: Swine vs. Human.
    Baah-Dwomoh A; Alperin M; Cook M; De Vita R
    Ann Biomed Eng; 2018 Dec; 46(12):2036-2047. PubMed ID: 30051246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biaxial mechanical properties of swine uterosacral and cardinal ligaments.
    Becker WR; De Vita R
    Biomech Model Mechanobiol; 2015 Jun; 14(3):549-60. PubMed ID: 25218641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strains induced in the vagina by smooth muscle contractions.
    Huntington A; Abramowitch SD; Moalli PA; De Vita R
    Acta Biomater; 2021 Jul; 129():178-187. PubMed ID: 34033971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-plane and out-of-plane deformations of gilt utero-sacral ligaments.
    Donaldson K; Thomas J; Zhu Y; Clark-Deener S; Alperin M; De Vita R
    J Mech Behav Biomed Mater; 2022 Jul; 131():105249. PubMed ID: 35526346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histo-mechanical properties of the swine cardinal and uterosacral ligaments.
    Tan T; Davis FM; Gruber DD; Massengill JC; Robertson JL; De Vita R
    J Mech Behav Biomed Mater; 2015 Feb; 42():129-37. PubMed ID: 25482216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study on morphological characteristics of uterosacral and cardinal ligament in patients with severe pelvic organ prolapse based on MRI].
    Ma X; Shang S; Xie B; Sun X; Yang X; Wu J; Hong N; Wang J
    Zhonghua Fu Chan Ke Za Zhi; 2015 Sep; 50(9):668-72. PubMed ID: 26675393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.
    Stella JA; Liao J; Sacks MS
    J Biomech; 2007; 40(14):3169-77. PubMed ID: 17570376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Stress distribution and deformation of uterosacral ligament and cardinal ligament under different working conditions simulated by the finite element model].
    Ma XX; Shang SY; Xie B; Chang Y; Sun XL; Yang X; Wu J; Hong N; Wang JL
    Zhonghua Fu Chan Ke Za Zhi; 2016 Feb; 51(2):114-9. PubMed ID: 26917480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Biaxial Biomechanical Properties of Post-menopausal Human Prolapsed and Non-prolapsed Uterosacral Ligament.
    Danso EK; Schuster JD; Johnson I; Harville EW; Buckner LR; Desrosiers L; Knoepp LR; Miller KS
    Sci Rep; 2020 Apr; 10(1):7386. PubMed ID: 32355180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniaxial and biaxial mechanical properties of porcine linea alba.
    Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biaxial Stress Relaxation of Vaginal Tissue in Pubertal Gilts.
    Pack E; Dubik J; Snyder W; Simon A; Clark S; De Vita R
    J Biomech Eng; 2020 Mar; 142(3):. PubMed ID: 31833537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of in vivo visco-hyperelastic properties of uterine suspensory tissue in women with and without pelvic organ prolapse.
    Luo J; Swenson CW; Betschart C; Feng F; Wang H; Ashton-Miller JA; DeLancey JOL
    J Mech Behav Biomed Mater; 2023 Jan; 137():105544. PubMed ID: 36332398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex Vivo Uniaxial Tensile Properties of Rat Uterosacral Ligaments.
    Donaldson K; De Vita R
    Ann Biomed Eng; 2023 Apr; 51(4):702-714. PubMed ID: 36652028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swine Vagina Under Planar Biaxial Loads: An Investigation of Large Deformations and Tears.
    McGuire JA; Abramowitch SD; Maiti S; De Vita R
    J Biomech Eng; 2019 Apr; 141(4):. PubMed ID: 30615053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A historical perspective and evolution of our knowledge on the cardinal ligament.
    Iancu G; Doumouchtsis SK
    Neurourol Urodyn; 2014 Apr; 33(4):380-6. PubMed ID: 23754258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Murine Vaginal Creep Response to Altered Mechanical Loads.
    Clark-Patterson GL; McGuire JA; Desrosiers L; Knoepp LR; De Vita R; Miller KS
    J Biomech Eng; 2021 Dec; 143(12):. PubMed ID: 34494082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile creep mechanical behavior of periodontal ligament: A hyper-viscoelastic constitutive model.
    Zhou J; Song Y; Shi X; Zhang C
    Comput Methods Programs Biomed; 2021 Aug; 207():106224. PubMed ID: 34146838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.