These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Schaffert H; Pelz A; Saxena A; Losen M; Meisel A; Thiel A; Kohler S Eur J Immunol; 2015 May; 45(5):1339-47. PubMed ID: 25676041 [TBL] [Abstract][Full Text] [Related]
3. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells. Wang W; Milani M; Ostlie N; Okita D; Agarwal RK; Caspi RR; Conti-Fine BM J Immunol; 2007 Jun; 178(11):7072-80. PubMed ID: 17513756 [TBL] [Abstract][Full Text] [Related]
4. MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK. Küçükerden M; Huda R; Tüzün E; Yılmaz A; Skriapa L; Trakas N; Strait RT; Finkelman FD; Kabadayı S; Zisimopoulou P; Tzartos S; Christadoss P J Neuroimmunol; 2016 Jun; 295-296():84-92. PubMed ID: 27235354 [TBL] [Abstract][Full Text] [Related]
5. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis. Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908 [TBL] [Abstract][Full Text] [Related]
6. The susceptibility of Aire(-/-) mice to experimental myasthenia gravis involves alterations in regulatory T cells. Aricha R; Feferman T; Scott HS; Souroujon MC; Berrih-Aknin S; Fuchs S J Autoimmun; 2011 Feb; 36(1):16-24. PubMed ID: 21035305 [TBL] [Abstract][Full Text] [Related]
7. Genetic deficiency of estrogen receptor alpha fails to influence experimental autoimmune myasthenia gravis pathogenesis. Qi H; Li J; Allman W; Saini SS; Tüzün E; Wu X; Estes DM; Christadoss P J Neuroimmunol; 2011 May; 234(1-2):165-7. PubMed ID: 21481948 [TBL] [Abstract][Full Text] [Related]
8. Introducing Autoimmunity at the Synapse by a Novel Animal Model of Experimental Autoimmune Myasthenia Gravis. Wang J; Xiao Y; Zhang K; Luo B; Shen C Neuroscience; 2018 Mar; 374():264-270. PubMed ID: 29421431 [TBL] [Abstract][Full Text] [Related]
9. Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades? Baggi F; Antozzi C; Toscani C; Cordiglieri C Arch Immunol Ther Exp (Warsz); 2012 Feb; 60(1):19-30. PubMed ID: 22159475 [TBL] [Abstract][Full Text] [Related]
13. A Targeted Complement Inhibitor CRIg/FH Protects Against Experimental Autoimmune Myasthenia Gravis in Rats Song J; Zhao R; Yan C; Luo S; Xi J; Ding P; Li L; Hu W; Zhao C Front Immunol; 2022; 13():746068. PubMed ID: 35154091 [TBL] [Abstract][Full Text] [Related]
14. Cooperation of invariant NKT cells and CD4+CD25+ T regulatory cells in the prevention of autoimmune myasthenia. Liu R; La Cava A; Bai XF; Jee Y; Price M; Campagnolo DI; Christadoss P; Vollmer TL; Van Kaer L; Shi FD J Immunol; 2005 Dec; 175(12):7898-904. PubMed ID: 16339525 [TBL] [Abstract][Full Text] [Related]
15. Novel complement inhibitor limits severity of experimentally myasthenia gravis. Soltys J; Kusner LL; Young A; Richmonds C; Hatala D; Gong B; Shanmugavel V; Kaminski HJ Ann Neurol; 2009 Jan; 65(1):67-75. PubMed ID: 19194881 [TBL] [Abstract][Full Text] [Related]
16. Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis. Wang HB; Shi FD; Li H; van der Meide PH; Ljunggren HG; Link H Clin Immunol; 2000 May; 95(2):156-62. PubMed ID: 10779409 [TBL] [Abstract][Full Text] [Related]
17. Classical complement pathway in experimental autoimmune myasthenia gravis pathogenesis. Christadoss P; Tüzün E; Li J; Saini SS; Yang H Ann N Y Acad Sci; 2008; 1132():210-9. PubMed ID: 18567870 [TBL] [Abstract][Full Text] [Related]