These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

781 related articles for article (PubMed ID: 28599282)

  • 1. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.
    Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB
    Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma.
    Yang Y; Yan LF; Zhang X; Nan HY; Hu YC; Han Y; Zhang J; Liu ZC; Sun YZ; Tian Q; Yu Y; Sun Q; Wang SY; Zhang X; Wang W; Cui GB
    J Magn Reson Imaging; 2019 May; 49(5):1263-1274. PubMed ID: 30623514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics strategy for glioma grading using texture features from multiparametric MRI.
    Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB
    J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading.
    Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I
    Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glioma grading using a machine-learning framework based on optimized features obtained from T
    Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A
    J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
    Citak-Er F; Firat Z; Kovanlikaya I; Ture U; Ozturk-Isik E
    Comput Biol Med; 2018 Aug; 99():154-160. PubMed ID: 29933126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.
    Inano R; Oishi N; Kunieda T; Arakawa Y; Yamao Y; Shibata S; Kikuchi T; Fukuyama H; Miyamoto S
    Neuroimage Clin; 2014; 5():396-407. PubMed ID: 25180159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: Preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis.
    Santarosa C; Castellano A; Conte GM; Cadioli M; Iadanza A; Terreni MR; Franzin A; Bello L; Caulo M; Falini A; Anzalone N
    Eur J Radiol; 2016 Jun; 85(6):1147-56. PubMed ID: 27161065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading.
    Xie T; Chen X; Fang J; Kang H; Xue W; Tong H; Cao P; Wang S; Yang Y; Zhang W
    J Magn Reson Imaging; 2018 Apr; 47(4):1099-1111. PubMed ID: 28845594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative glioma grading using transformed gray-scale invariant textures of MRI.
    Li-Chun Hsieh K; Chen CY; Lo CM
    Comput Biol Med; 2017 Apr; 83():102-108. PubMed ID: 28254615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intergrating conventional MRI, texture analysis of dynamic contrast-enhanced MRI, and susceptibility weighted imaging for glioma grading.
    Su CQ; Lu SS; Han QY; Zhou MD; Hong XN
    Acta Radiol; 2019 Jun; 60(6):777-787. PubMed ID: 30244590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.
    Liu HS; Chiang SW; Chung HW; Tsai PH; Hsu FT; Cho NY; Wang CY; Chou MC; Chen CY
    Comput Methods Programs Biomed; 2018 Mar; 155():19-27. PubMed ID: 29512499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas.
    Alis D; Bagcilar O; Senli YD; Yergin M; Isler C; Kocer N; Islak C; Kizilkilic O
    Jpn J Radiol; 2020 Feb; 38(2):135-143. PubMed ID: 31741126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging.
    Takahashi S; Takahashi W; Tanaka S; Haga A; Nakamoto T; Suzuki Y; Mukasa A; Takayanagi S; Kitagawa Y; Hana T; Nejo T; Nomura M; Nakagawa K; Saito N
    Int J Radiat Oncol Biol Phys; 2019 Nov; 105(4):784-791. PubMed ID: 31344432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas.
    Skogen K; Schulz A; Dormagen JB; Ganeshan B; Helseth E; Server A
    Eur J Radiol; 2016 Apr; 85(4):824-9. PubMed ID: 26971430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas.
    Raja R; Sinha N; Saini J; Mahadevan A; Rao KN; Swaminathan A
    Neuroradiology; 2016 Dec; 58(12):1217-1231. PubMed ID: 27796448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades.
    Zhang Z; Xiao J; Wu S; Lv F; Gong J; Jiang L; Yu R; Luo T
    J Digit Imaging; 2020 Aug; 33(4):826-837. PubMed ID: 32040669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images.
    Sengupta A; Agarwal S; Gupta PK; Ahlawat S; Patir R; Gupta RK; Singh A
    Eur J Radiol; 2018 Sep; 106():199-208. PubMed ID: 30150045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.