These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Partial differential equation-based localization of a monopole source from a circular array. Ando S; Nara T; Levy T J Acoust Soc Am; 2013 Oct; 134(4):2799-813. PubMed ID: 24116418 [TBL] [Abstract][Full Text] [Related]
6. Robust acoustic source localization based on modal beamforming and time-frequency processing using circular microphone arrays. Torres AM; Cobos M; Pueo B; Lopez JJ J Acoust Soc Am; 2012 Sep; 132(3):1511-20. PubMed ID: 22978880 [TBL] [Abstract][Full Text] [Related]
7. Acoustic centering of sources measured by surrounding spherical microphone arrays. Hagai IB; Pollow M; Vorländer M; Rafaely B J Acoust Soc Am; 2011 Oct; 130(4):2003-15. PubMed ID: 21973355 [TBL] [Abstract][Full Text] [Related]
8. Optimal two-layer directive microphone array with application in near-field acoustical holography. Bai MR; Wang C; Juan SW J Acoust Soc Am; 2012 Aug; 132(2):862-71. PubMed ID: 22894209 [TBL] [Abstract][Full Text] [Related]
9. Beamforming with a circular array of microphones mounted on a rigid sphere (L). Tiana-Roig E; Jacobsen F; Fernandez-Grande E J Acoust Soc Am; 2011 Sep; 130(3):1095-8. PubMed ID: 21895051 [TBL] [Abstract][Full Text] [Related]
10. Moving microphone arrays to reduce spatial aliasing in the beamforming technique: theoretical background and numerical investigation. Cigada A; Lurati M; Ripamonti F; Vanali M J Acoust Soc Am; 2008 Dec; 124(6):3648-3658. PubMed ID: 19206793 [TBL] [Abstract][Full Text] [Related]
11. Spatial perception of sound fields recorded by spherical microphone arrays with varying spatial resolution. Avni A; Ahrens J; Geier M; Spors S; Wierstorf H; Rafaely B J Acoust Soc Am; 2013 May; 133(5):2711-21. PubMed ID: 23654379 [TBL] [Abstract][Full Text] [Related]
12. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays. Gur B J Acoust Soc Am; 2014 Jun; 135(6):3463-73. PubMed ID: 24907810 [TBL] [Abstract][Full Text] [Related]
13. Room geometry inference based on spherical microphone array eigenbeam processing. Mabande E; Kowalczyk K; Sun H; Kellermann W J Acoust Soc Am; 2013 Oct; 134(4):2773-89. PubMed ID: 24116416 [TBL] [Abstract][Full Text] [Related]
15. A circular microphone array with virtual microphones based on acoustics-informed neural networks. Zhao S; Ma F J Acoust Soc Am; 2024 Jul; 156(1):405-415. PubMed ID: 39007730 [TBL] [Abstract][Full Text] [Related]
16. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition. Torres AM; Lopez JJ; Pueo B; Cobos M J Acoust Soc Am; 2013 Apr; 133(4):2146-56. PubMed ID: 23556584 [TBL] [Abstract][Full Text] [Related]
17. Design and performance evaluation of a broadband three dimensional acoustic intensity measuring system. Miah KH; Hixon EL J Acoust Soc Am; 2010 Apr; 127(4):2338-46. PubMed ID: 20370016 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the measured and theoretical performance of a broadband circular microphone array. Parthy A; Epain N; van Schaik A; Jin CT J Acoust Soc Am; 2011 Dec; 130(6):3827-37. PubMed ID: 22225040 [TBL] [Abstract][Full Text] [Related]
19. Sound reproduction systems using variable-directivity loudspeakers. Poletti MA; Fazi FM; Nelson PA J Acoust Soc Am; 2011 Mar; 129(3):1429-38. PubMed ID: 21428507 [TBL] [Abstract][Full Text] [Related]
20. Particle velocity estimation based on a two-microphone array and Kalman filter. Bai MR; Juan SW; Chen CC J Acoust Soc Am; 2013 Mar; 133(3):1425-32. PubMed ID: 23464014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]