These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28599556)

  • 1. Acoustic force measurements on polymer-coated microbubbles in a microfluidic device.
    Memoli G; Fury CR; Baxter KO; Gélat PN; Jones PH
    J Acoust Soc Am; 2017 May; 141(5):3364. PubMed ID: 28599556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustofluidic Measurements on Polymer-Coated Microbubbles: Primary and Secondary Bjerknes Forces.
    Memoli G; Baxter KO; Jones HG; Mingard KP; Zeqiri B
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of polymer-shelled microbubble motions in acoustophoresis.
    Kothapalli SV; Wiklund M; Janerot-Sjoberg B; Paradossi G; Grishenkov D
    Ultrasonics; 2016 Aug; 70():275-83. PubMed ID: 27261567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles.
    Xie Y; Zhao C; Zhao Y; Li S; Rufo J; Yang S; Guo F; Huang TJ
    Lab Chip; 2013 May; 13(9):1772-1779. PubMed ID: 23511348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Italian Society of Cardiovascular Echography (SIEC) Consensus Conference on the state of the art of contrast echocardiography.
    Ital Heart J; 2004 Apr; 5(4):309-34. PubMed ID: 15185894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic trapping of microbubbles in complex environments and controlled payload release.
    Baresch D; Garbin V
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15490-15496. PubMed ID: 32571936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces.
    Garbin V; Overvelde M; Dollet B; de Jong N; Lohse D; Versluis M
    Phys Med Biol; 2011 Oct; 56(19):6161-77. PubMed ID: 21878709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures.
    Emmer M; Vos HJ; Goertz DE; van Wamel A; Versluis M; de Jong N
    Ultrasound Med Biol; 2009 Jan; 35(1):102-11. PubMed ID: 18829153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustical properties of individual liposome-loaded microbubbles.
    Luan Y; Faez T; Gelderblom E; Skachkov I; Geers B; Lentacker I; van der Steen T; Versluis M; de Jong N
    Ultrasound Med Biol; 2012 Dec; 38(12):2174-85. PubMed ID: 23196203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels With In Vivo Results.
    Wang S; Wang CY; Unnikrishnan S; Klibanov AL; Hossack JA; Mauldin FW
    Invest Radiol; 2015 Nov; 50(11):772-84. PubMed ID: 26135018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging.
    Cacace T; Bianco V; Paturzo M; Memmolo P; Vassalli M; Fraldi M; Mensitieri G; Ferraro P
    Lab Chip; 2018 Jun; 18(13):1921-1927. PubMed ID: 29878010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The onset of microbubble vibration.
    Emmer M; van Wamel A; Goertz DE; de Jong N
    Ultrasound Med Biol; 2007 Jun; 33(6):941-9. PubMed ID: 17451868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping.
    Lakämper S; Lamprecht A; Schaap IA; Dual J
    Lab Chip; 2015 Jan; 15(1):290-300. PubMed ID: 25370872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties.
    Parrales MA; Fernandez JM; Perez-Saborid M; Kopechek JA; Porter TM
    J Acoust Soc Am; 2014 Sep; 136(3):1077. PubMed ID: 25190383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed optical observations of contrast agent destruction.
    Bouakaz A; Versluis M; de Jong N
    Ultrasound Med Biol; 2005 Mar; 31(3):391-9. PubMed ID: 15749563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics, microstreaming, and biological effects.
    Pereno V; Aron M; Vince O; Mannaris C; Seth A; de Saint Victor M; Lajoinie G; Versluis M; Coussios C; Carugo D; Stride E
    Biomicrofluidics; 2018 May; 12(3):034109. PubMed ID: 29887932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WE-C-218-01: Ultrasound Contrast Agents.
    Streeter JE; Dayton PA
    Med Phys; 2012 Jun; 39(6Part27):3953. PubMed ID: 28520019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ultrasound on adherent microbubble contrast agents.
    Loughran J; Sennoga C; J Eckersley R; Tang MX
    Phys Med Biol; 2012 Nov; 57(21):6999-7014. PubMed ID: 23044731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cavitation-radiated acoustic power using diffraction correction.
    Rich KT; Holland CK; Rao MB; Mast TD
    J Acoust Soc Am; 2018 Dec; 144(6):3563. PubMed ID: 30599638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbubble characterization through acoustically induced deflation.
    Guidi F; Vos HJ; Mori R; de Jong N; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):193-202. PubMed ID: 20040446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.