BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

693 related articles for article (PubMed ID: 28599652)

  • 1. Regulatory T cells in multiple sclerosis and myasthenia gravis.
    Danikowski KM; Jayaraman S; Prabhakar BS
    J Neuroinflammation; 2017 Jun; 14(1):117. PubMed ID: 28599652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of experimental autoimmune myasthenia gravis by autologous T regulatory cells.
    Aricha R; Reuveni D; Fuchs S; Souroujon MC
    J Autoimmun; 2016 Feb; 67():57-64. PubMed ID: 26489998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysfunction of IL-10-producing type 1 regulatory T cells and CD4(+)CD25(+) regulatory T cells in a mimic model of human multiple sclerosis in Cynomolgus monkeys.
    Ma A; Xiong Z; Hu Y; Qi S; Song L; Dun H; Zhang L; Lou D; Yang P; Zhao Z; Wang X; Zhang D; Daloze P; Chen H
    Int Immunopharmacol; 2009 May; 9(5):599-608. PubMed ID: 19539557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atorvastatin-modified dendritic cells in vitro ameliorate experimental autoimmune myasthenia gravis by up-regulated Treg cells and shifted Th1/Th17 to Th2 cytokines.
    Li XL; Liu Y; Cao LL; Li H; Yue LT; Wang S; Zhang M; Li XH; Dou YC; Duan RS
    Mol Cell Neurosci; 2013 Sep; 56():85-95. PubMed ID: 23541702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impairment of regulatory T cells in myasthenia gravis: studies in an experimental model.
    Gertel-Lapter S; Mizrachi K; Berrih-Aknin S; Fuchs S; Souroujon MC
    Autoimmun Rev; 2013 Jul; 12(9):894-903. PubMed ID: 23535156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells.
    Wang W; Milani M; Ostlie N; Okita D; Agarwal RK; Caspi RR; Conti-Fine BM
    J Immunol; 2007 Jun; 178(11):7072-80. PubMed ID: 17513756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex vivo generated regulatory T cells modulate experimental autoimmune myasthenia gravis.
    Aricha R; Feferman T; Fuchs S; Souroujon MC
    J Immunol; 2008 Feb; 180(4):2132-9. PubMed ID: 18250419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prophylactic effect of probiotics on the development of experimental autoimmune myasthenia gravis.
    Chae CS; Kwon HK; Hwang JS; Kim JE; Im SH
    PLoS One; 2012; 7(12):e52119. PubMed ID: 23284891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile.
    Yang H; Zhang Y; Wu M; Li J; Zhou W; Li G; Li X; Xiao B; Christadoss P
    Inflamm Res; 2010 Mar; 59(3):197-205. PubMed ID: 19768385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis.
    Thiruppathi M; Sheng JR; Li L; Prabhakar BS; Meriggioli MN
    J Autoimmun; 2014 Aug; 52():64-73. PubMed ID: 24388113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A GMCSF-Neuroantigen Tolerogenic Vaccine Elicits Systemic Lymphocytosis of CD4
    Moorman CD; Curtis AD; Bastian AG; Elliott SE; Mannie MD
    Front Immunol; 2018; 9():3119. PubMed ID: 30687323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperation of invariant NKT cells and CD4+CD25+ T regulatory cells in the prevention of autoimmune myasthenia.
    Liu R; La Cava A; Bai XF; Jee Y; Price M; Campagnolo DI; Christadoss P; Vollmer TL; Van Kaer L; Shi FD
    J Immunol; 2005 Dec; 175(12):7898-904. PubMed ID: 16339525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory T cell-based immunotherapies in experimental autoimmune myasthenia gravis.
    Souroujon MC; Aricha R; Feferman T; Mizrachi K; Reuveni D; Fuchs S
    Ann N Y Acad Sci; 2012 Dec; 1274():120-6. PubMed ID: 23252906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blocking of IL-6 suppresses experimental autoimmune myasthenia gravis.
    Aricha R; Mizrachi K; Fuchs S; Souroujon MC
    J Autoimmun; 2011 Mar; 36(2):135-41. PubMed ID: 21193288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BM stromal cells ameliorate experimental autoimmune myasthenia gravis by altering the balance of Th cells through the secretion of IDO.
    Kong QF; Sun B; Wang GY; Zhai DX; Mu LL; Wang DD; Wang JH; Li R; Li HL
    Eur J Immunol; 2009 Mar; 39(3):800-9. PubMed ID: 19283707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of regulatory T Cells in autoimmune orchitis.
    Jacobo P
    Andrologia; 2018 Dec; 50(11):e13092. PubMed ID: 30569653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An angel or a devil? Current view on the role of CD8
    Peng Y; Yang H; Chen Q; Jin H; Xue YH; Du MQ; Liu S; Yao SY
    J Transl Med; 2024 Feb; 22(1):183. PubMed ID: 38378668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IFN-β Facilitates Neuroantigen-Dependent Induction of CD25+ FOXP3+ Regulatory T Cells That Suppress Experimental Autoimmune Encephalomyelitis.
    Wang D; Ghosh D; Islam SM; Moorman CD; Thomason AE; Wilkinson DS; Mannie MD
    J Immunol; 2016 Oct; 197(8):2992-3007. PubMed ID: 27619998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia.
    Liu R; Zhou Q; La Cava A; Campagnolo DI; Van Kaer L; Shi FD
    Eur J Immunol; 2010 Jun; 40(6):1577-89. PubMed ID: 20352624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Targeted Complement Inhibitor CRIg/FH Protects Against Experimental Autoimmune Myasthenia Gravis in Rats
    Song J; Zhao R; Yan C; Luo S; Xi J; Ding P; Li L; Hu W; Zhao C
    Front Immunol; 2022; 13():746068. PubMed ID: 35154091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.