BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28599891)

  • 1. Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in sphingomyelin and involved in re-epithelialization.
    Mound A; Lozanova V; Warnon C; Hermant M; Robic J; Guere C; Vie K; Lambert de Rouvroit C; Tyteca D; Debacq-Chainiaux F; Poumay Y
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):958-971. PubMed ID: 28599891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous sphingomyelin segregates into submicrometric domains in the living erythrocyte membrane.
    Carquin M; Pollet H; Veiga-da-Cunha M; Cominelli A; Van Der Smissen P; N'kuli F; Emonard H; Henriet P; Mizuno H; Courtoy PJ; Tyteca D
    J Lipid Res; 2014 Jul; 55(7):1331-42. PubMed ID: 24826836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of sphingomyelin- and cholesterol-enriched lipid domains during cytokinesis.
    Abe M; Kobayashi T
    Methods Cell Biol; 2017; 137():15-24. PubMed ID: 28065303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingomyelin-rich domains are sites of lysenin oligomerization: implications for raft studies.
    Kulma M; Hereć M; Grudziński W; Anderluh G; Gruszecki WI; Kwiatkowska K; Sobota A
    Biochim Biophys Acta; 2010 Mar; 1798(3):471-81. PubMed ID: 20018171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains.
    Kishimoto T; Ishitsuka R; Kobayashi T
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):812-829. PubMed ID: 26993577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysenin: a sphingomyelin specific pore-forming toxin.
    Shogomori H; Kobayashi T
    Biochim Biophys Acta; 2008 Mar; 1780(3):612-8. PubMed ID: 17980968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol segregates into submicrometric domains at the living erythrocyte membrane: evidence and regulation.
    Carquin M; Conrard L; Pollet H; Van Der Smissen P; Cominelli A; Veiga-da-Cunha M; Courtoy PJ; Tyteca D
    Cell Mol Life Sci; 2015 Dec; 72(23):4633-51. PubMed ID: 26077601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning of Differential Lipid Order Between Submicrometric Domains and Surrounding Membrane Upon Erythrocyte Reshaping.
    Leonard C; Pollet H; Vermylen C; Gov N; Tyteca D; Mingeot-Leclercq MP
    Cell Physiol Biochem; 2018; 48(6):2563-2582. PubMed ID: 30121671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three unrelated sphingomyelin analogs spontaneously cluster into plasma membrane micrometric domains.
    Tyteca D; D'Auria L; Der Smissen PV; Medts T; Carpentier S; Monbaliu JC; de Diesbach P; Courtoy PJ
    Biochim Biophys Acta; 2010 May; 1798(5):909-27. PubMed ID: 20123084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging local sphingomyelin-rich domains in the plasma membrane using specific probes and advanced microscopy.
    Abe M; Kobayashi T
    Biochim Biophys Acta; 2014 May; 1841(5):720-6. PubMed ID: 23860017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sensing of membrane microdomains based on pore-forming toxins.
    Skočaj M; Bakrač B; Križaj I; Maček P; Anderluh G; Sepčić K
    Curr Med Chem; 2013; 20(4):491-501. PubMed ID: 23244522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of plasma membrane lipid domains to red blood cell (re)shaping.
    Leonard C; Conrard L; Guthmann M; Pollet H; Carquin M; Vermylen C; Gailly P; Van Der Smissen P; Mingeot-Leclercq MP; Tyteca D
    Sci Rep; 2017 Jun; 7(1):4264. PubMed ID: 28655935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactins modulate the lateral organization of fluorescent membrane polar lipids: a new tool to study drug:membrane interaction and assessment of the role of cholesterol and drug acyl chain length.
    D'Auria L; Deleu M; Dufour S; Mingeot-Leclercq MP; Tyteca D
    Biochim Biophys Acta; 2013 Sep; 1828(9):2064-73. PubMed ID: 23685123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIV-1 Gag targeting to the plasma membrane reorganizes sphingomyelin-rich and cholesterol-rich lipid domains.
    Tomishige N; Bin Nasim M; Murate M; Pollet B; Didier P; Godet J; Richert L; Sako Y; Mély Y; Kobayashi T
    Nat Commun; 2023 Nov; 14(1):7353. PubMed ID: 37990014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segregation of fluorescent membrane lipids into distinct micrometric domains: evidence for phase compartmentation of natural lipids?
    D'auria L; Van der Smissen P; Bruyneel F; Courtoy PJ; Tyteca D
    PLoS One; 2011 Feb; 6(2):e17021. PubMed ID: 21386970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization.
    Li Z; Hailemariam TK; Zhou H; Li Y; Duckworth DC; Peake DA; Zhang Y; Kuo MS; Cao G; Jiang XC
    Biochim Biophys Acta; 2007 Sep; 1771(9):1186-94. PubMed ID: 17616479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging lipid membrane domains with lipid-specific probes.
    Hullin-Matsuda F; Ishitsuka R; Takahashi M; Kobayashi T
    Methods Mol Biol; 2009; 580():203-20. PubMed ID: 19784601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipid symmetry governs membrane lipid raft structure.
    Quinn PJ
    Biochim Biophys Acta; 2014 Jul; 1838(7):1922-30. PubMed ID: 24613791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lipid-specific toxin reveals heterogeneity of sphingomyelin-containing membranes.
    Ishitsuka R; Yamaji-Hasegawa A; Makino A; Hirabayashi Y; Kobayashi T
    Biophys J; 2004 Jan; 86(1 Pt 1):296-307. PubMed ID: 14695271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein.
    Skočaj M; Resnik N; Grundner M; Ota K; Rojko N; Hodnik V; Anderluh G; Sobota A; Maček P; Veranič P; Sepčić K
    PLoS One; 2014; 9(3):e92783. PubMed ID: 24664106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.