These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28599920)

  • 1. A self-recirculation electrolyte system for unbuffered microbial fuel cells with an aerated cathode.
    Zhang L; Zhu X; Li J; Fu Q; Liao Q; Li Y; Li Y
    Bioresour Technol; 2017 Oct; 241():1173-1177. PubMed ID: 28599920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.
    Zhang L; Zhu X; Kashima H; Li J; Ye DD; Liao Q; Regan JM
    Bioresour Technol; 2015 Mar; 179():26-34. PubMed ID: 25514399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of microbial fuel cell coupled with aeration chamber and bio-cathode for organic matter and nitrogen removal from synthetic domestic wastewater.
    Cha J; Kim C; Choi S; Lee G; Chen G; Lee T
    Water Sci Technol; 2009; 60(6):1409-18. PubMed ID: 19759443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].
    Cai XB; Yang Y; Sun YP; Zhang L; Xiao Y; Zhao H
    Huan Jing Ke Xue; 2010 Oct; 31(10):2512-7. PubMed ID: 21229770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-aeration in anode chamber promotes p-nitrophenol degradation and electricity generation in microbial fuel cell.
    Khan A; Chen Z; Zhao S; Ni H; Pei Y; Xu R; Ling Z; Salama ES; Liu P; Li X
    Bioresour Technol; 2019 Aug; 285():121291. PubMed ID: 30999190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous flowing membraneless microbial fuel cells with separated electrode chambers.
    Du F; Xie B; Dong W; Jia B; Dong K; Liu H
    Bioresour Technol; 2011 Oct; 102(19):8914-20. PubMed ID: 21821412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen availability effect on the performance of air-breathing cathode microbial fuel cell.
    Mateo S; Rodrigo M; Fonseca LP; Cañizares P; Fernandez-Morales FJ
    Biotechnol Prog; 2015; 31(4):900-7. PubMed ID: 25962613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using live algae at the anode of a microbial fuel cell to generate electricity.
    Xu C; Poon K; Choi MM; Wang R
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15621-35. PubMed ID: 26018284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design.
    Ahn Y; Logan BE
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2241-8. PubMed ID: 22314518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell.
    He Z; Huang Y; Manohar AK; Mansfeld F
    Bioelectrochemistry; 2008 Nov; 74(1):78-82. PubMed ID: 18774345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electricity generation using membrane and salt bridge microbial fuel cells.
    Min B; Cheng S; Logan BE
    Water Res; 2005 May; 39(9):1675-86. PubMed ID: 15899266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power density enhancement of anion-exchange membrane-installed microbial fuel cell under bicarbonate-buffered cathode condition.
    Piao J; An J; Ha PT; Kim T; Jang JK; Moon H; Chang IS
    J Microbiol Biotechnol; 2013 Jan; 23(1):36-9. PubMed ID: 23314365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-energy generation in an affordable, single-chamber microbial fuel cell integrated with adsorption hybrid system: effects of temperature and comparison study.
    Tee PF; Abdullah MO; Tan IAW; Amin MAM; Nolasco-Hipolito C; Bujang K
    Environ Technol; 2018 Apr; 39(8):1081-1088. PubMed ID: 28417676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity production from xylose using a mediator-less microbial fuel cell.
    Huang L; Zeng RJ; Angelidaki I
    Bioresour Technol; 2008 Jul; 99(10):4178-84. PubMed ID: 17964145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air-cathode structure optimization in separator-coupled microbial fuel cells.
    Zhang X; Sun H; Liang P; Huang X; Chen X; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):267-71. PubMed ID: 21996324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Enhanced Removal of Herbicide 2,4-dichlorophenoxyacetic Acid and Simultaneous Power Generation in Microbial Fuel Cells].
    Quan XC; Quan YP; Xiao ZT
    Huan Jing Ke Xue; 2017 Mar; 38(3):1067-1073. PubMed ID: 29965578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced performance of an air-cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor.
    Kakarla R; Kim JR; Jeon BH; Min B
    Bioresour Technol; 2015 Nov; 195():210-6. PubMed ID: 26188984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of microbial fuel cells based on the operational parameters of biocathode during simultaneous Congo red decolorization and electricity generation.
    Hou B; Lu J; Wang H; Li Y; Liu P; Liu Y; Chen J
    Bioelectrochemistry; 2019 Aug; 128():291-297. PubMed ID: 31059969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.