These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28600564)

  • 21. Electrochemical Reduction of CO
    Zhang S; Zhao S; Qu D; Liu X; Wu Y; Chen Y; Huang W
    Small; 2021 Sep; 17(37):e2102293. PubMed ID: 34342137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic effect of Cu and Fe small nanoparticles supported on porous N-doped graphitic framework for selective electrochemical CO
    Du X; Peng L; Hu J; Peng Y; Primo A; Li D; Albero J; Hu C; GarcĂ­a H
    Nanoscale; 2022 Aug; 14(32):11583-11589. PubMed ID: 35916576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Manganese dioxide nanorods intercalated reduced graphene oxide nanocomposite toward high performance electrochemical supercapacitive electrode materials.
    Parveen N; Ansari SA; Ansari MO; Cho MH
    J Colloid Interface Sci; 2017 Nov; 506():613-619. PubMed ID: 28763765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MoP supported on reduced graphene oxide for high performance electrochemical nitrogen reduction.
    Zhou Y; Yu X; Sun F; Zhang J
    Dalton Trans; 2020 Jan; 49(4):988-992. PubMed ID: 31912814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective Electrochemical Reduction of Carbon Dioxide Using Cu Based Metal Organic Framework for CO
    Qiu YL; Zhong HX; Zhang TT; Xu WB; Su PP; Li XF; Zhang HM
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2480-2489. PubMed ID: 29266922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosensor nanoarchitectonics of Cu-Fe-nanoparticles/Zeolite-A/Graphene nanocomposite for enhanced electrooxidation and dopamine detection.
    Nagarajan N; Panchatcharam P
    Heliyon; 2023 Sep; 9(9):e19741. PubMed ID: 37809966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cu-THQ-EFG Composite for Highly Selective Electrochemical CO
    Jia L; Wagner K; Smyth J; Officer D; Chen J; Wagner P
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling the C
    Gu L; Dutta Chowdhury A
    Dalton Trans; 2023 Nov; 52(43):15958-15967. PubMed ID: 37846524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper-organic frameworks.
    Yang F; Chen A; Deng PL; Zhou Y; Shahid Z; Liu H; Xia BY
    Chem Sci; 2019 Sep; 10(34):7975-7981. PubMed ID: 31853353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured cobalt/copper catalysts for efficient electrochemical carbon dioxide reduction.
    Abner S; Chen A
    Nanoscale; 2024 Jul; 16(27):12967-12981. PubMed ID: 38899409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amorphization-Activated Copper Indium Core-Shell Nanoparticles for Stable Syngas Production from Electrochemical CO
    Shen J; Wang L; He X; Wang S; Chen J; Wang J; Jin H
    ChemSusChem; 2022 Dec; 15(23):e202201350. PubMed ID: 36149307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials.
    Choi C; Cheng T; Flores Espinosa M; Fei H; Duan X; Goddard WA; Huang Y
    Adv Mater; 2019 Feb; 31(6):e1805405. PubMed ID: 30549121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO
    Li M; Ma Y; Chen J; Lawrence R; Luo W; Sacchi M; Jiang W; Yang J
    Angew Chem Int Ed Engl; 2021 May; 60(20):11487-11493. PubMed ID: 33683786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneously Formed CuS
    Lim JW; Dong WJ; Park JY; Hong DM; Lee JL
    ACS Appl Mater Interfaces; 2020 May; 12(20):22891-22900. PubMed ID: 32392026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst.
    Manthiram K; Beberwyck BJ; Alivisatos AP
    J Am Chem Soc; 2014 Sep; 136(38):13319-25. PubMed ID: 25137433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective electrochemical reduction of carbon dioxide to ethylene on a copper hydroxide nitrate nanostructure electrode.
    Wang M; Zhang Q; Xie Q; Wan L; Zhao Y; Zhang X; Luo J
    Nanoscale; 2020 Aug; 12(32):17013-17019. PubMed ID: 32780074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zinc-Coordinated Nitrogen-Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO
    Chen Z; Mou K; Yao S; Liu L
    ChemSusChem; 2018 Sep; 11(17):2944-2952. PubMed ID: 29956488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Steam Induced Surface Oxygen Vacancy onto Ni-Fe Bimetallic Nanocomposite for CO
    He Q; Zhang Y; Li H; Yang Y; Chen S; Yan W; Dong J; Zhang XM; Fan X
    Small; 2022 Apr; 18(15):e2108034. PubMed ID: 35419992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen-Doped Graphene Quantum Dots Enhance the Activity of Bi
    Chen Z; Mou K; Wang X; Liu L
    Angew Chem Int Ed Engl; 2018 Sep; 57(39):12790-12794. PubMed ID: 30074663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CO
    Zhao K; Liu Y; Quan X; Chen S; Yu H
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5302-5311. PubMed ID: 28103017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.