These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28600738)

  • 1. Functional brain networks reconstruction using group sparsity-regularized learning.
    Zhao Q; Li WXY; Jiang X; Lv J; Lu J; Liu T
    Brain Imaging Behav; 2018 Jun; 12(3):758-770. PubMed ID: 28600738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extendable supervised dictionary learning for exploring diverse and concurrent brain activities in task-based fMRI.
    Zhao S; Han J; Hu X; Jiang X; Lv J; Zhang T; Zhang S; Guo L; Liu T
    Brain Imaging Behav; 2018 Jun; 12(3):743-757. PubMed ID: 28600737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse representation of group-wise FMRI signals.
    Lv J; Li X; Zhu D; Jiang X; Zhang X; Hu X; Zhang T; Guo L; Liu T
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):608-16. PubMed ID: 24505812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supervised dictionary learning for inferring concurrent brain networks.
    Zhao S; Han J; Lv J; Jiang X; Hu X; Zhao Y; Ge B; Guo L; Liu T
    IEEE Trans Med Imaging; 2015 Oct; 34(10):2036-45. PubMed ID: 25838519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Sparse Dictionary Learning Separation (SDLS) Model With Adaptive Dictionary Mutual Incoherence Constraint for fMRI Data Analysis.
    Wang N; Zeng W; Chen D
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2376-2389. PubMed ID: 26929024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations.
    Zhang S; Li X; Lv J; Jiang X; Guo L; Liu T
    Brain Imaging Behav; 2016 Mar; 10(1):21-32. PubMed ID: 25732072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task fMRI data analysis based on supervised stochastic coordinate coding.
    Lv J; Lin B; Li Q; Zhang W; Zhao Y; Jiang X; Guo L; Han J; Hu X; Guo C; Ye J; Liu T
    Med Image Anal; 2017 May; 38():1-16. PubMed ID: 28242473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse representation of whole-brain fMRI signals for identification of functional networks.
    Lv J; Jiang X; Li X; Zhu D; Chen H; Zhang T; Zhang S; Hu X; Han J; Huang H; Zhang J; Guo L; Liu T
    Med Image Anal; 2015 Feb; 20(1):112-34. PubMed ID: 25476415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A generic framework for embedding human brain function with temporally correlated autoencoder.
    Zhao L; Wu Z; Dai H; Liu Z; Hu X; Zhang T; Zhu D; Liu T
    Med Image Anal; 2023 Oct; 89():102892. PubMed ID: 37482031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Temporal and Spatial Sparse Representation for Inferring Group-Wise Brain Networks From Resting-State fMRI Dataset.
    Gong J; Liu X; Liu T; Zhou J; Sun G; Tian J
    IEEE Trans Biomed Eng; 2018 May; 65(5):1035-1048. PubMed ID: 28796604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sparse representation and dictionary learning model incorporating group sparsity and incoherence to extract abnormal brain regions associated with schizophrenia.
    Peng P; Ju Y; Zhang Y; Wang K; Jiang S; Wang Y
    IEEE Access; 2020; 8():104396-104406. PubMed ID: 33747675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal sampling for efficient sparse representation of resting state FMRI data.
    Ge B; Makkie M; Wang J; Zhao S; Jiang X; Li X; Lv J; Zhang S; Zhang W; Han J; Guo L; Liu T
    Brain Imaging Behav; 2016 Dec; 10(4):1206-1222. PubMed ID: 26646924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous spatial-temporal decomposition for connectome-scale brain networks by deep sparse recurrent auto-encoder.
    Li Q; Dong Q; Ge F; Qiang N; Wu X; Liu T
    Brain Imaging Behav; 2021 Oct; 15(5):2646-2660. PubMed ID: 33755922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connectome-scale functional intrinsic connectivity networks in macaques.
    Zhang W; Jiang X; Zhang S; Howell BR; Zhao Y; Zhang T; Guo L; Sanchez MM; Hu X; Liu T
    Neuroscience; 2017 Nov; 364():1-14. PubMed ID: 28842187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Recognition of fMRI-Derived Functional Networks Using 3-D Convolutional Neural Networks.
    Zhao Y; Dong Q; Zhang S; Zhang W; Chen H; Jiang X; Guo L; Hu X; Han J; Liu T
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):1975-1984. PubMed ID: 28641239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain.
    Yang B; Yuan M; Ma Y; Zhang J; Zhan K
    BMC Med Imaging; 2015 Aug; 15():28. PubMed ID: 26253135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse deep dictionary learning identifies differences of time-varying functional connectivity in brain neuro-developmental study.
    Qiao C; Yang L; Calhoun VD; Xu ZB; Wang YP
    Neural Netw; 2021 Mar; 135():91-104. PubMed ID: 33373885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive connectome subnetwork extraction with anatomical and connectivity priors.
    Brown CJ; Miller SP; Booth BG; Zwicker JG; Grunau RE; Synnes AR; Chau V; Hamarneh G
    Comput Med Imaging Graph; 2019 Jan; 71():67-78. PubMed ID: 30508806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.