These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 28600759)
1. Whole-Genome Enrichment Using RNA Probes and Sequencing of Chlamydia trachomatis Directly from Clinical Samples. Brown AC; Christiansen MT Methods Mol Biol; 2017; 1616():1-22. PubMed ID: 28600759 [TBL] [Abstract][Full Text] [Related]
2. Whole-Genome Sequencing of Chlamydia trachomatis Directly from Human Samples. Brown AC; Christiansen MT Methods Mol Biol; 2019; 2042():45-67. PubMed ID: 31385270 [TBL] [Abstract][Full Text] [Related]
3. Whole-genome enrichment and sequencing of Chlamydia trachomatis directly from clinical samples. Christiansen MT; Brown AC; Kundu S; Tutill HJ; Williams R; Brown JR; Holdstock J; Holland MJ; Stevenson S; Dave J; Tong CY; Einer-Jensen K; Depledge DP; Breuer J BMC Infect Dis; 2014 Nov; 14():591. PubMed ID: 25388670 [TBL] [Abstract][Full Text] [Related]
4. Whole-Genome Sequencing of Mycobacterium tuberculosis Directly from Sputum Samples. Brown AC Methods Mol Biol; 2021; 2314():459-480. PubMed ID: 34235666 [TBL] [Abstract][Full Text] [Related]
5. Whole-Genome Enrichment and Sequencing of Chlamydia trachomatis Directly from Patient Clinical Vaginal and Rectal Swabs. Bowden KE; Joseph SJ; Cartee JC; Ziklo N; Danavall D; Raphael BH; Read TD; Dean D mSphere; 2021 Mar; 6(2):. PubMed ID: 33658279 [No Abstract] [Full Text] [Related]
6. Revealing the Genetic Diversity of Chinese Chlamydia trachomatis Strains Directly From Clinical Samples Through Selective Whole Genome Amplification. Chen W; Zhou C; Su X; Yin X; Yuan W; Hu C; Zhao W J Infect Dis; 2024 Oct; 230(4):857-867. PubMed ID: 38547503 [TBL] [Abstract][Full Text] [Related]
7. Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture. Seth-Smith HM; Harris SR; Skilton RJ; Radebe FM; Golparian D; Shipitsyna E; Duy PT; Scott P; Cutcliffe LT; O'Neill C; Parmar S; Pitt R; Baker S; Ison CA; Marsh P; Jalal H; Lewis DA; Unemo M; Clarke IN; Parkhill J; Thomson NR Genome Res; 2013 May; 23(5):855-66. PubMed ID: 23525359 [TBL] [Abstract][Full Text] [Related]
8. Genome organization and genomics in Luu LDW; Kasimov V; Phillips S; Myers GSA; Jelocnik M Front Cell Infect Microbiol; 2023; 13():1178736. PubMed ID: 37287464 [TBL] [Abstract][Full Text] [Related]
9. Sequences of multiple bacterial genomes and a Chlamydia trachomatis genotype from direct sequencing of DNA derived from a vaginal swab diagnostic specimen. Andersson P; Klein M; Lilliebridge RA; Giffard PM Clin Microbiol Infect; 2013 Sep; 19(9):E405-8. PubMed ID: 23647919 [TBL] [Abstract][Full Text] [Related]
10. High-resolution multilocus sequence typing for Chlamydia trachomatis: improved results for clinical samples with low amounts of C. trachomatis DNA. Pilo S; Zizelski Valenci G; Rubinstein M; Pichadze L; Scharf Y; Dveyrin Z; Rorman E; Nissan I BMC Microbiol; 2021 Jan; 21(1):28. PubMed ID: 33461496 [TBL] [Abstract][Full Text] [Related]
11. Chlamydia trachomatis Biovar L2 Infection in Women in South Africa. Peters RPH; Doyle R; Redelinghuys MJ; McIntyre JA; Verjans GM; Breuer J; Kock MM Emerg Infect Dis; 2017 Nov; 23(11):1913-1915. PubMed ID: 29048296 [TBL] [Abstract][Full Text] [Related]
12. Demonstration of Persistent Infections and Genome Stability by Whole-Genome Sequencing of Repeat-Positive, Same-Serovar Chlamydia trachomatis Collected From the Female Genital Tract. Suchland RJ; Dimond ZE; Putman TE; Rockey DD J Infect Dis; 2017 Jun; 215(11):1657-1665. PubMed ID: 28368459 [TBL] [Abstract][Full Text] [Related]
13. Direct amplification, sequencing and profiling of Chlamydia trachomatis strains in single and mixed infection clinical samples. Joseph SJ; Li B; Ghonasgi T; Haase CP; Qin ZS; Dean D; Read TD PLoS One; 2014; 9(6):e99290. PubMed ID: 24971628 [TBL] [Abstract][Full Text] [Related]
14. Evolution of Chlamydia trachomatis. Clarke IN Ann N Y Acad Sci; 2011 Aug; 1230():E11-8. PubMed ID: 22239534 [TBL] [Abstract][Full Text] [Related]
15. High-resolution typing of Chlamydia trachomatis: epidemiological and clinical uses. de Vries HJ; Schim van der Loeff MF; Bruisten SM Curr Opin Infect Dis; 2015 Feb; 28(1):61-71. PubMed ID: 25490105 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning and nucleic acid sequencing of Chlamydia trachomatis 16S rRNA genes from patient samples lacking the cryptic plasmid. An Q; Olive DM Mol Cell Probes; 1994 Oct; 8(5):429-35. PubMed ID: 7877640 [TBL] [Abstract][Full Text] [Related]
17. Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Joseph SJ; Didelot X; Gandhi K; Dean D; Read TD Biol Direct; 2011 May; 6():28. PubMed ID: 21615910 [TBL] [Abstract][Full Text] [Related]
18. Targeted DNA enrichment and whole genome sequencing of Neisseria meningitidis directly from clinical specimens. Clark SA; Doyle R; Lucidarme J; Borrow R; Breuer J Int J Med Microbiol; 2018 Mar; 308(2):256-262. PubMed ID: 29153620 [TBL] [Abstract][Full Text] [Related]
19. Development of real-time PCR assays for genotyping of Chlamydia trachomatis. Jalal H; Stephen H; Alexander S; Carne C; Sonnex C J Clin Microbiol; 2007 Aug; 45(8):2649-53. PubMed ID: 17567790 [TBL] [Abstract][Full Text] [Related]
20. DNA sequencing validation of Chlamydia trachomatis and Neisseria gonorrhoeae nucleic acid tests. Lee SH; Vigliotti VS; Pappu S Am J Clin Pathol; 2008 Jun; 129(6):852-9. PubMed ID: 18480000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]