BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28600768)

  • 1. Detection and Differentiation of Lyme Spirochetes and Other Tick-Borne Pathogens from Blood Using Real-Time PCR with Molecular Beacons.
    Schlachter S; Chan K; Marras SAE; Parveen N
    Methods Mol Biol; 2017; 1616():155-170. PubMed ID: 28600768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti.
    Chan K; Marras SA; Parveen N
    BMC Microbiol; 2013 Dec; 13():295. PubMed ID: 24359556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient detection of symptomatic and asymptomatic patient samples for Babesia microti and Borrelia burgdorferi infection by multiplex qPCR.
    Primus S; Akoolo L; Schlachter S; Gedroic K; Rojtman AD; Parveen N
    PLoS One; 2018; 13(5):e0196748. PubMed ID: 29746483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relatively low prevalence of Babesia microti and Anaplasma phagocytophilum in Ixodes scapularis ticks collected in the Lehigh Valley region of eastern Pennsylvania.
    Edwards MJ; Barbalato LA; Makkapati A; Pham KD; Bugbee LM
    Ticks Tick Borne Dis; 2015 Sep; 6(6):812-9. PubMed ID: 26318263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serological survey in persons occupationally exposed to tick-borne pathogens in cases of co-infections with Borrelia burgdorferi, Anaplasma phagocytophilum, Bartonella spp. and Babesia microti.
    Chmielewska-Badora J; Moniuszko A; Żukiewicz-Sobczak W; Zwoliński J; Piątek J; Pancewicz S
    Ann Agric Environ Med; 2012; 19(2):271-4. PubMed ID: 22742800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence Rates of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and Babesia microti (Piroplasmida: Babesiidae) in Host-Seeking Ixodes scapularis (Acari: Ixodidae) from Pennsylvania.
    Hutchinson ML; Strohecker MD; Simmons TW; Kyle AD; Helwig MW
    J Med Entomol; 2015 Jul; 52(4):693-8. PubMed ID: 26335476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Borrelia burgdorferi, Anaplasma phagocytophilum and Babesia microti, with two different multiplex PCR assays.
    Hojgaard A; Lukacik G; Piesman J
    Ticks Tick Borne Dis; 2014 Apr; 5(3):349-51. PubMed ID: 24507434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Borrelia miyamotoi and other tick-borne pathogens in human clinical specimens and Ixodes scapularis ticks in New York State, 2012-2015.
    Wroblewski D; Gebhardt L; Prusinski MA; Meehan LJ; Halse TA; Musser KA
    Ticks Tick Borne Dis; 2017 Mar; 8(3):407-411. PubMed ID: 28131594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalence of Anaplasma phagocytophilum and Babesia microti in Ixodes scapularis from a Newly Established Lyme Disease Endemic Area, the Thousand Islands Region of Ontario, Canada.
    Werden L; Lindsay LR; Barker IK; Bowman J; Gonzales EK; Jardine CM
    Vector Borne Zoonotic Dis; 2015 Oct; 15(10):627-9. PubMed ID: 26393476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The incidence of
    Pañczuk A; Tokarska-Rodak M; Kozioł-Montewka M; Plewik D
    J Vector Borne Dis; 2016; 53(4):348-354. PubMed ID: 28035112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplex PCR for molecular screening of Borrelia burgdorferi sensu lato, Anaplasma spp. and Babesia spp.
    Rodríguez I; Burri C; Noda AA; Douet V; Gern L
    Ann Agric Environ Med; 2015; 22(4):642-6. PubMed ID: 26706969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a tick-borne pathogen QPCR panel for detection of Anaplasma, Ehrlichia, Rickettsia, and Lyme disease Borrelia in animals.
    Shen Z; Zhang MZ; Stich RW; Mitchell WJ; Zhang S
    J Microbiol Methods; 2018 Aug; 151():83-89. PubMed ID: 29802869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens.
    Ostfeld RS; Levi T; Jolles AE; Martin LB; Hosseini PR; Keesing F
    PLoS One; 2014; 9(9):e107387. PubMed ID: 25232722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-Related Differential Stimulation of Immune Response by
    Djokic V; Primus S; Akoolo L; Chakraborti M; Parveen N
    Front Immunol; 2018; 9():2891. PubMed ID: 30619263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evidence of coinfection of Borrelia burgdorferi sensu lato, human granulocytic ehrlichiosis agent, and Babesia microti in ticks from northwestern Poland.
    Skotarczak B; Rymaszewska A; Wodecka B; Sawczuk M
    J Parasitol; 2003 Feb; 89(1):194-6. PubMed ID: 12659331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ixodes ricinus as a vector of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in urban and suburban forests.
    Stańczak J; Gabre RM; Kruminis-Łozowska W; Racewicz M; Kubica-Biernat B
    Ann Agric Environ Med; 2004; 11(1):109-14. PubMed ID: 15236507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of Ticks and the Risk of Lyme Disease and Other Tick-Borne Pathogens of Public Health Significance in Ontario, Canada.
    Clow KM; Ogden NH; Lindsay LR; Michel P; Pearl DL; Jardine CM
    Vector Borne Zoonotic Dis; 2016 Apr; 16(4):215-22. PubMed ID: 26870937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel quantitative PCR detects Babesia infection in patients not identified by currently available non-nucleic acid amplification tests.
    BMC Microbiol; ; . PubMed ID: 28088177
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.