These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
472 related articles for article (PubMed ID: 28600826)
1. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs. Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826 [TBL] [Abstract][Full Text] [Related]
2. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform. Peng X; Zhang Y; Chu H; Li G J Comput Chem; 2016 Mar; 37(6):614-22. PubMed ID: 26493154 [TBL] [Abstract][Full Text] [Related]
3. Virial Based Berendsen Barostat on GPUs using AMOEBA in Tinker-OpenMM. Harger M; Ren P Results Chem; 2019 Jan; 1():. PubMed ID: 33868909 [TBL] [Abstract][Full Text] [Related]
4. Binding Free Energies of Host-Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Illustrative Calculations and Numerical Validation. Giovannelli E; Cioni M; Procacci P; Cardini G; Pagliai M; Volkov V; Chelli R J Chem Theory Comput; 2017 Dec; 13(12):5887-5899. PubMed ID: 29112430 [TBL] [Abstract][Full Text] [Related]
5. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method. Azimi S; Khuttan S; Wu JZ; Pal RK; Gallicchio E J Chem Inf Model; 2022 Jan; 62(2):309-323. PubMed ID: 34990555 [TBL] [Abstract][Full Text] [Related]
6. Accurate Host-Guest Binding Free Energies Using the AMOEBA Polarizable Force Field. Chung MKJ; Miller RJ; Novak B; Wang Z; Ponder JW J Chem Inf Model; 2023 May; 63(9):2769-2782. PubMed ID: 37075788 [TBL] [Abstract][Full Text] [Related]
7. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Lagardère L; Jolly LH; Lipparini F; Aviat F; Stamm B; Jing ZF; Harger M; Torabifard H; Cisneros GA; Schnieders MJ; Gresh N; Maday Y; Ren PY; Ponder JW; Piquemal JP Chem Sci; 2018 Jan; 9(4):956-972. PubMed ID: 29732110 [TBL] [Abstract][Full Text] [Related]
8. Alchemical Transfer Approach to Absolute Binding Free Energy Estimation. Wu JZ; Azimi S; Khuttan S; Deng N; Gallicchio E J Chem Theory Comput; 2021 Jun; 17(6):3309-3319. PubMed ID: 33983730 [TBL] [Abstract][Full Text] [Related]
9. SAMPL7 TrimerTrip host-guest binding affinities from extensive alchemical and end-point free energy calculations. Huai Z; Yang H; Li X; Sun Z J Comput Aided Mol Des; 2021 Jan; 35(1):117-129. PubMed ID: 33037549 [TBL] [Abstract][Full Text] [Related]
10. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821 [TBL] [Abstract][Full Text] [Related]
11. Implementation of the QUBE Force Field in SOMD for High-Throughput Alchemical Free-Energy Calculations. Nelson L; Bariami S; Ringrose C; Horton JT; Kurdekar V; Mey ASJS; Michel J; Cole DJ J Chem Inf Model; 2021 May; 61(5):2124-2130. PubMed ID: 33886305 [TBL] [Abstract][Full Text] [Related]
12. Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package. Mermelstein DJ; Lin C; Nelson G; Kretsch R; McCammon JA; Walker RC J Comput Chem; 2018 Jul; 39(19):1354-1358. PubMed ID: 29532496 [TBL] [Abstract][Full Text] [Related]
13. Binding Free Energies of Host-Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Theoretical Framework. Giovannelli E; Procacci P; Cardini G; Pagliai M; Volkov V; Chelli R J Chem Theory Comput; 2017 Dec; 13(12):5874-5886. PubMed ID: 28992706 [TBL] [Abstract][Full Text] [Related]
14. Alchemical free energy simulations without speed limits. A generic framework to calculate free energy differences independent of the underlying molecular dynamics program. Wieder M; Fleck M; Braunsfeld B; Boresch S J Comput Chem; 2022 Jun; 43(17):1151-1160. PubMed ID: 35485139 [TBL] [Abstract][Full Text] [Related]
16. Application of the alchemical transfer and potential of mean force methods to the SAMPL8 host-guest blinded challenge. Azimi S; Wu JZ; Khuttan S; Kurtzman T; Deng N; Gallicchio E J Comput Aided Mol Des; 2022 Jan; 36(1):63-76. PubMed ID: 35059940 [TBL] [Abstract][Full Text] [Related]
17. Absolute binding free energies for the SAMPL6 cucurbit[8]uril host-guest challenge via the AMOEBA polarizable force field. Laury ML; Wang Z; Gordon AS; Ponder JW J Comput Aided Mol Des; 2018 Oct; 32(10):1087-1095. PubMed ID: 30324303 [TBL] [Abstract][Full Text] [Related]
18. AMOEBA binding free energies for the SAMPL7 TrimerTrip host-guest challenge. Shi Y; Laury ML; Wang Z; Ponder JW J Comput Aided Mol Des; 2021 Jan; 35(1):79-93. PubMed ID: 33140208 [TBL] [Abstract][Full Text] [Related]
19. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units. Lindert S; Bucher D; Eastman P; Pande V; McCammon JA J Chem Theory Comput; 2013 Nov; 9(11):4684-4691. PubMed ID: 24634618 [TBL] [Abstract][Full Text] [Related]
20. Absolute Protein Binding Free Energy Simulations for Ligands with Multiple Poses, a Thermodynamic Path That Avoids Exhaustive Enumeration of the Poses. Sakae Y; Zhang BW; Levy RM; Deng N J Comput Chem; 2020 Jan; 41(1):56-68. PubMed ID: 31621932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]