BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 28600944)

  • 1. Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues.
    Demichelis F; Pleissner D; Fiore S; Mariano S; Navarro Gutiérrez IM; Schneider R; Venus J
    Bioresour Technol; 2017 Oct; 241():508-516. PubMed ID: 28600944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More value from food waste: Lactic acid and biogas recovery.
    Kim MS; Na JG; Lee MK; Ryu H; Chang YK; Triolo JM; Yun YM; Kim DH
    Water Res; 2016 Jun; 96():208-16. PubMed ID: 27058878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect from anaerobic co-digestion of food waste and Sophora flavescens residues at different co-substrate ratios.
    Ma X; Yu M; Yang M; Gao M; Wu C; Wang Q
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37114-37124. PubMed ID: 31745798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promote lactic acid production from food waste fermentation using biogas slurry recirculation.
    Wang Q; Yang L; Feng K; Li H; Deng Z; Liu J
    Bioresour Technol; 2021 Oct; 337():125393. PubMed ID: 34120058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of lactic acid from food wastes.
    Kim KI; Kim WK; Seo DK; Yoo IS; Kim EK; Yoon HH
    Appl Biochem Biotechnol; 2003; 105 -108():637-47. PubMed ID: 12721443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of storage duration and micro-aerobic conditions on lactic acid production from food waste.
    Zhang Z; Tsapekos P; Alvarado-Morales M; Angelidaki I
    Bioresour Technol; 2021 Mar; 323():124618. PubMed ID: 33406468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient oriented bioconversion of food waste to lactic acid in an open system: Microbial community analysis and biological carbon fixation evaluation.
    Liu S; Wang Q; Li Y; Ma X; Zhu W; Wang N; Sun H; Gao M
    Bioresour Technol; 2023 Feb; 370():128398. PubMed ID: 36496318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of lactic acid from thermal pretreated food waste through the fermentation of waste activated sludge: Effects of substrate and thermal pretreatment temperature.
    Li J; Zhang W; Li X; Ye T; Gan Y; Zhang A; Chen H; Xue G; Liu Y
    Bioresour Technol; 2018 Jan; 247():890-896. PubMed ID: 30060427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process alternatives for bioethanol production from mango stem bark residues.
    Carrillo-Nieves D; Ruiz HA; Aguilar CN; Ilyina A; Parra-Saldivar R; Torres JA; Martínez Hernández JL
    Bioresour Technol; 2017 Sep; 239():430-436. PubMed ID: 28538199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of thermal and ultrasonic pretreatment on lactic acid fermentation of food waste.
    Pau S; Tan LC; Arriaga Garcia SL; Lens PN
    Waste Manag Res; 2023 Mar; 41(3):566-574. PubMed ID: 36169149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark fermentative hydrogen production: Potential of food waste as future energy needs.
    Mohanakrishna G; Sneha NP; Rafi SM; Sarkar O
    Sci Total Environ; 2023 Aug; 888():163801. PubMed ID: 37127164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of food and lignocellulosic wastes employing sugar platform: A review of enzymatic hydrolysis and kinetics.
    Dharma Patria R; Rehman S; Vuppaladadiyam AK; Wang H; Lin CSK; Antunes E; Leu SY
    Bioresour Technol; 2022 May; 352():127083. PubMed ID: 35364238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.
    Hafid HS; Nor 'Aini AR; Mokhtar MN; Talib AT; Baharuddin AS; Umi Kalsom MS
    Waste Manag; 2017 Sep; 67():95-105. PubMed ID: 28527863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of l-lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste.
    Zheng J; Gao M; Wang Q; Wang J; Sun X; Chang Q; Tashiro Y
    Bioresour Technol; 2017 Feb; 225():159-164. PubMed ID: 27888733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biorefinery Concept Employing
    Schroedter L; Streffer F; Streffer K; Unger P; Venus J
    Microorganisms; 2021 Aug; 9(9):. PubMed ID: 34576705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of solid and liquid waste generated during ethanol fermentation process for production of gaseous fuel through anaerobic digestion--a zero waste approach.
    Narra M; Balasubramanian V
    Bioresour Technol; 2015 Mar; 180():376-80. PubMed ID: 25637278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactic acid production from food waste using a microbial consortium: Focus on key parameters for process upscaling and fermentation residues valorization.
    Chenebault C; Moscoviz R; Trably E; Escudié R; Percheron B
    Bioresour Technol; 2022 Jun; 354():127230. PubMed ID: 35483530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol and biogas production: an alternative valorisation pathway for green waste.
    Sofokleous M; Christofi A; Malamis D; Mai S; Barampouti EM
    Chemosphere; 2022 Jun; 296():133970. PubMed ID: 35176302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biorefinery of instant noodle waste to biofuels.
    Yang X; Lee SJ; Yoo HY; Choi HS; Park C; Kim SW
    Bioresour Technol; 2014 May; 159():17-23. PubMed ID: 24632436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production.
    Berlowska J; Cieciura-Włoch W; Kalinowska H; Kregiel D; Borowski S; Pawlikowska E; Binczarski M; Witonska I
    Food Technol Biotechnol; 2018 Jun; 56(2):188-196. PubMed ID: 30228793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.