These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28601224)

  • 21. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.
    Chen K; Wei Z; Zhang Q; Wu X; Rong R; Lu Z; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2019 Apr; 47(7):e41. PubMed ID: 30993345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments.
    Selega A; Sirocchi C; Iosub I; Granneman S; Sanguinetti G
    Nat Methods; 2017 Jan; 14(1):83-89. PubMed ID: 27819660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA Post-Transcriptional Modification Mapping Data Analysis Using RNA Framework.
    Manfredonia I; Incarnato D
    Methods Mol Biol; 2021; 2298():3-13. PubMed ID: 34085235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical Modifications to RNA: A New Layer of Gene Expression Regulation.
    Song J; Yi C
    ACS Chem Biol; 2017 Feb; 12(2):316-325. PubMed ID: 28051309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution.
    Khoddami V; Yerra A; Mosbruger TL; Fleming AM; Burrows CJ; Cairns BR
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6784-6789. PubMed ID: 30872485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-Wide Probing of RNA Structures In Vitro Using Nucleases and Deep Sequencing.
    Wan Y; Qu K; Ouyang Z; Chang HY
    Methods Mol Biol; 2016; 1361():141-60. PubMed ID: 26483021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical Modifications Mark Alternatively Spliced and Uncapped Messenger RNAs in Arabidopsis.
    Vandivier LE; Campos R; Kuksa PP; Silverman IM; Wang LS; Gregory BD
    Plant Cell; 2015 Nov; 27(11):3024-37. PubMed ID: 26561561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pseudouridine: the fifth RNA nucleotide with renewed interests.
    Li X; Ma S; Yi C
    Curr Opin Chem Biol; 2016 Aug; 33():108-16. PubMed ID: 27348156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic calibration of epitranscriptomic maps using a synthetic modification-free RNA library.
    Zhang Z; Chen T; Chen HX; Xie YY; Chen LQ; Zhao YL; Liu BD; Jin L; Zhang W; Liu C; Ma DZ; Chai GS; Zhang Y; Zhao WS; Ng WH; Chen J; Jia G; Yang J; Luo GZ
    Nat Methods; 2021 Oct; 18(10):1213-1222. PubMed ID: 34594034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epitranscriptomic Code and Its Alterations in Human Disease.
    Kadumuri RV; Janga SC
    Trends Mol Med; 2018 Oct; 24(10):886-903. PubMed ID: 30120023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epitranscriptome Mapping of N
    Law J; Günther S; Watanabe S
    Methods Mol Biol; 2023; 2640():431-443. PubMed ID: 36995611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoding the Atlas of RNA Modifications from Epitranscriptome Sequencing Data.
    Zhang XQ; Yang JH
    Methods Mol Biol; 2019; 1870():107-124. PubMed ID: 30539550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis.
    Chatterjee B; Shen CJ; Majumder P
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding RNA modifications: the promises and technological bottlenecks of the 'epitranscriptome'.
    Schaefer M; Kapoor U; Jantsch MF
    Open Biol; 2017 May; 7(5):. PubMed ID: 28566301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data.
    Xuan JJ; Sun WJ; Lin PH; Zhou KR; Liu S; Zheng LL; Qu LH; Yang JH
    Nucleic Acids Res; 2018 Jan; 46(D1):D327-D334. PubMed ID: 29040692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome-Wide Mapping of N⁶-Methyladenosine by m⁶A-Seq.
    Dominissini D; Moshitch-Moshkovitz S; Amariglio N; Rechavi G
    Methods Enzymol; 2015; 560():131-47. PubMed ID: 26253969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome.
    Molinie B; Wang J; Lim KS; Hillebrand R; Lu ZX; Van Wittenberghe N; Howard BD; Daneshvar K; Mullen AC; Dedon P; Xing Y; Giallourakis CC
    Nat Methods; 2016 Aug; 13(8):692-8. PubMed ID: 27376769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Illustrating the Epitranscriptome at Nucleotide Resolution Using Methylation-iCLIP (miCLIP).
    George H; Ule J; Hussain S
    Methods Mol Biol; 2017; 1562():91-106. PubMed ID: 28349456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal Transcriptomics.
    Singan VR; Kuo RC; Chen C
    Methods Mol Biol; 2018; 1775():83-92. PubMed ID: 29876811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HAMR: high-throughput annotation of modified ribonucleotides.
    Ryvkin P; Leung YY; Silverman IM; Childress M; Valladares O; Dragomir I; Gregory BD; Wang LS
    RNA; 2013 Dec; 19(12):1684-92. PubMed ID: 24149843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.