These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28601242)

  • 1. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis.
    Leardini A; Belvedere C; Nardini F; Sancisi N; Conconi M; Parenti-Castelli V
    J Biomech; 2017 Sep; 62():77-86. PubMed ID: 28601242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a multibody kinematics optimization method for three-dimensional canine pelvic limb gait analysis.
    Lin CC; Wu CH; Chou PY; Wang SN; Hsu WR; Lu TW
    BMC Vet Res; 2020 Apr; 16(1):105. PubMed ID: 32245381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.
    El Habachi A; Moissenet F; Duprey S; Cheze L; Dumas R
    Med Biol Eng Comput; 2015 Jul; 53(7):655-67. PubMed ID: 25783762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization.
    Duprey S; Cheze L; Dumas R
    J Biomech; 2010 Oct; 43(14):2858-62. PubMed ID: 20701914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic models of the upper limb joints for multibody kinematics optimisation: An overview.
    Duprey S; Naaim A; Moissenet F; Begon M; Chèze L
    J Biomech; 2017 Sep; 62():87-94. PubMed ID: 27986326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review.
    Begon M; Andersen MS; Dumas R
    J Biomech Eng; 2018 Mar; 140(3):. PubMed ID: 29238821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.
    Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S
    J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Musculoskeletal Multibody Algorithm Based on a Novel Rheonomic Constraints Definition Applied to the Lower Limb.
    Ruggiero A; Sicilia A
    J Biomech Eng; 2022 Aug; 144(8):. PubMed ID: 35171239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational model for dynamic analysis of the human gait.
    Vimieiro C; Andrada E; Witte H; Pinotti M
    Comput Methods Biomech Biomed Engin; 2015; 18(7):799-804. PubMed ID: 24156601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations of musculoskeletal models for a more accurate estimation of lower limb joint contact forces during normal gait: A systematic review.
    Moissenet F; Modenese L; Dumas R
    J Biomech; 2017 Oct; 63():8-20. PubMed ID: 28919103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of patient-specific multi-joint kinematic models through two-level optimization.
    Reinbolt JA; Schutte JF; Fregly BJ; Koh BI; Haftka RT; George AD; Mitchell KH
    J Biomech; 2005 Mar; 38(3):621-6. PubMed ID: 15652563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To what extent is joint and muscle mechanics predicted by musculoskeletal models sensitive to soft tissue artefacts?
    Lamberto G; Martelli S; Cappozzo A; Mazzà C
    J Biomech; 2017 Sep; 62():68-76. PubMed ID: 27622973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait.
    Dumas R; Moissenet F; Gasparutto X; Cheze L
    Proc Inst Mech Eng H; 2012 Feb; 226(2):146-60. PubMed ID: 22468466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of a new methodology for Soft Tissue Artifact compensation in the lower limb.
    Lahkar BK; Rohan PY; Assi A; Pillet H; Bonnet X; Thoreux P; Skalli W
    J Biomech; 2021 Jun; 122():110464. PubMed ID: 33932915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):782-93. PubMed ID: 17518274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.
    Kainz H; Modenese L; Lloyd DG; Maine S; Walsh HPJ; Carty CP
    J Biomech; 2016 Jun; 49(9):1658-1669. PubMed ID: 27139005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computationally efficient strategy to estimate muscle forces in a finite element musculoskeletal model of the lower limb.
    Navacchia A; Hume DR; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():94-102. PubMed ID: 30616983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chain kinematic model to assess the movement of lower-limb including wobbling masses.
    Thouzé A; Monnet T; Bélaise C; Lacouture P; Begon M
    Comput Methods Biomech Biomed Engin; 2016; 19(7):707-16. PubMed ID: 26214052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sloped walking on lower limb muscle forces.
    Alexander N; Schwameder H
    Gait Posture; 2016 Jun; 47():62-7. PubMed ID: 27264405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.