BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 28601531)

  • 1. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential intracochlear sound pressure measurements in normal human temporal bones.
    Nakajima HH; Dong W; Olson ES; Merchant SN; Ravicz ME; Rosowski JJ
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL; Guan X; Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2018 Sep; 367():17-31. PubMed ID: 30015103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
    Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2013 Jul; 301():105-14. PubMed ID: 23159918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones During Bone Conduction Stimulation.
    Stieger C; Guan X; Farahmand RB; Page BF; Merchant JP; Abur D; Nakajima HH
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):523-539. PubMed ID: 30171386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT; Mattingly JK; Jenkins HA; Tollin DJ; Easter JR; Cass SP
    Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracochlear pressure and temporal bone motion interaction under bone conduction stimulation.
    Dobrev I; Pfiffner F; Röösli C
    Hear Res; 2023 Aug; 435():108818. PubMed ID: 37267833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity.
    Ryan M; Lally J; Adams JK; Higgins S; Ahmed M; Aden J; Esquivel C; Spear SA
    Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of inner ear contribution in bone conduction in chinchilla.
    Chhan D; Röösli C; McKinnon ML; Rosowski JJ
    Hear Res; 2013 Jul; 301():66-71. PubMed ID: 23211609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracochlear pressure measurements during acoustic shock wave exposure.
    Greene NT; Alhussaini MA; Easter JR; Argo TF; Walilko T; Tollin DJ
    Hear Res; 2018 Aug; 365():149-164. PubMed ID: 29843947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to measure sound transmission via the malleus-incus complex.
    Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH
    Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model predictions for bone conduction perception in the human.
    Stenfelt S
    Hear Res; 2016 Oct; 340():135-143. PubMed ID: 26657096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of the effect of middle ear in bone conduction.
    Dobrev I; Farahmandi TS; Röösli C
    Hear Res; 2020 Sep; 395():108041. PubMed ID: 32810722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.