Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 28601703)

  • 1. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing.
    Wang Y; Malcolm DW; Benoit DSW
    Biomaterials; 2017 Sep; 139():127-138. PubMed ID: 28601703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery.
    Wang Y; Zhang S; Benoit DSW
    J Control Release; 2018 Oct; 287():58-66. PubMed ID: 30077736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracture-Targeted Delivery of β-Catenin Agonists via Peptide-Functionalized Nanoparticles Augments Fracture Healing.
    Wang Y; Newman MR; Ackun-Farmmer M; Baranello MP; Sheu TJ; Puzas JE; Benoit DSW
    ACS Nano; 2017 Sep; 11(9):9445-9458. PubMed ID: 28881139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of critically sized femoral defects with recombinant BMP-2 delivered by a modified mPEG-PLGA biodegradable thermosensitive hydrogel.
    Peng KT; Hsieh MY; Lin CT; Chen CF; Lee MS; Huang YY; Chang PJ
    BMC Musculoskelet Disord; 2016 Jul; 17():286. PubMed ID: 27421654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic Mucic Acid Polymer-Based siRNA Delivery Systems.
    Pan DW; Davis ME
    Bioconjug Chem; 2015 Aug; 26(8):1791-803. PubMed ID: 26154102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects.
    Nguyen MK; Jeon O; Dang PN; Huynh CT; Varghai D; Riazi H; McMillan A; Herberg S; Alsberg E
    Acta Biomater; 2018 Jul; 75():105-114. PubMed ID: 29885529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel-based Delivery of rhBMP-2 Improves Healing of Large Bone Defects Compared With Autograft.
    Krishnan L; Priddy LB; Esancy C; Li MT; Stevens HY; Jiang X; Tran L; Rowe DW; Guldberg RE
    Clin Orthop Relat Res; 2015 Sep; 473(9):2885-97. PubMed ID: 25917422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo.
    Aldrian G; Vaissière A; Konate K; Seisel Q; Vivès E; Fernandez F; Viguier V; Genevois C; Couillaud F; Démèné H; Aggad D; Covinhes A; Barrère-Lemaire S; Deshayes S; Boisguerin P
    J Control Release; 2017 Jun; 256():79-91. PubMed ID: 28411182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing.
    Dunn SS; Tian S; Blake S; Wang J; Galloway AL; Murphy A; Pohlhaus PD; Rolland JP; Napier ME; DeSimone JM
    J Am Chem Soc; 2012 May; 134(17):7423-30. PubMed ID: 22475061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy.
    Li TS; Yawata T; Honke K
    Eur J Pharm Sci; 2014 Feb; 52():48-61. PubMed ID: 24178005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery
    Zhu X; Tao W; Liu D; Wu J; Guo Z; Ji X; Bharwani Z; Zhao L; Zhao X; Farokhzad OC; Shi J
    Theranostics; 2017; 7(7):1990-2002. PubMed ID: 28638484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired pH- and Temperature-Responsive Injectable Adhesive Hydrogels with Polyplexes Promotes Skin Wound Healing.
    Le TMD; Duong HTT; Thambi T; Giang Phan VH; Jeong JH; Lee DS
    Biomacromolecules; 2018 Aug; 19(8):3536-3548. PubMed ID: 30005160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells.
    Song Y; Tang C; Yin C
    Biomaterials; 2018 Dec; 185():117-132. PubMed ID: 30241030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo.
    Van Hove AH; Burke K; Antonienko E; Brown E; Benoit DS
    J Control Release; 2015 Nov; 217():191-201. PubMed ID: 26365781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized and sustained delivery of silencing RNA from macroscopic biopolymer hydrogels.
    Krebs MD; Jeon O; Alsberg E
    J Am Chem Soc; 2009 Jul; 131(26):9204-6. PubMed ID: 19530653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer.
    Yu MZ; Pang WH; Yang T; Wang JC; Wei L; Qiu C; Wu YF; Liu WZ; Wei W; Guo XY; Zhang Q
    Eur J Pharm Sci; 2016 Sep; 92():39-48. PubMed ID: 27355138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of Biological Fluids on Colloidal Stability and siRNA Delivery of a pH-Responsive Micellar Nanoparticle Delivery System.
    Malcolm DW; Varghese JJ; Sorrells JE; Ovitt CE; Benoit DSW
    ACS Nano; 2018 Jan; 12(1):187-197. PubMed ID: 29232104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoplasmic delivery of functional siRNA using pH-Responsive nanoscale hydrogels.
    Liechty WB; Scheuerle RL; Vela Ramirez JE; Peppas NA
    Int J Pharm; 2019 May; 562():249-257. PubMed ID: 30858114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local release of siRNA using polyplex-loaded thermosensitive hydrogels.
    Fliervoet LAL; Zhang H; van Groesen E; Fortuin K; Duin NJCB; Remaut K; Schiffelers RM; Hennink WE; Vermonden T
    Nanoscale; 2020 May; 12(18):10347-10360. PubMed ID: 32369076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable and protease-degradable hydrogel for siRNA sequestration and triggered delivery to the heart.
    Wang LL; Chung JJ; Li EC; Uman S; Atluri P; Burdick JA
    J Control Release; 2018 Sep; 285():152-161. PubMed ID: 29981357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.