These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 28601740)
1. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification. Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices. Nabavi SA; Gu S; Vladisavljević GT; Ekanem EE J Colloid Interface Sci; 2015 Jul; 450():279-287. PubMed ID: 25828435 [TBL] [Abstract][Full Text] [Related]
3. Emulsion droplet formation in coflowing liquid streams. Chen Y; Wu L; Zhang C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013002. PubMed ID: 23410421 [TBL] [Abstract][Full Text] [Related]
4. Understanding the microfluidic generation of double emulsion droplets with alginate shell. Huang L; Wu K; Cai S; Yu H; Liu D; Yuan W; Chen X; Ji H Colloids Surf B Biointerfaces; 2023 Feb; 222():113114. PubMed ID: 36577345 [TBL] [Abstract][Full Text] [Related]
5. Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions. Leister N; Vladisavljević GT; Karbstein HP J Colloid Interface Sci; 2022 Apr; 611():451-461. PubMed ID: 34968964 [TBL] [Abstract][Full Text] [Related]
6. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces. Christov NC; Danov KD; Danova DK; Kralchevsky PA Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414 [TBL] [Abstract][Full Text] [Related]
7. Dripping, Jetting and Regime Transition of Droplet Formation in a Buoyancy-Assisted Microfluidic Device. Shen C; Liu F; Wu L; Yu C; Yu W Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33121113 [TBL] [Abstract][Full Text] [Related]
8. A ternary model for double-emulsion formation in a capillary microfluidic device. Park JM; Anderson PD Lab Chip; 2012 Aug; 12(15):2672-7. PubMed ID: 22592893 [TBL] [Abstract][Full Text] [Related]
9. Controlled formation of double-emulsion drops in sudden expansion channels. Kim SH; Kim B J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326 [TBL] [Abstract][Full Text] [Related]
10. High inertial microfluidics for droplet generation in a flow-focusing geometry. Mastiani M; Seo S; Riou B; Kim M Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430 [TBL] [Abstract][Full Text] [Related]
11. Liquid flow focused by a gas: jetting, dripping, and recirculation. Herrada MA; Gañán-Calvo AM; Ojeda-Monge A; Bluth B; Riesco-Chueca P Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036323. PubMed ID: 18851159 [TBL] [Abstract][Full Text] [Related]
12. Mode Transition of Droplet Formation in a Semi-3D Flow-Focusing Microfluidic Droplet System. Wu Y; Qian X; Zhang M; Dong Y; Sun S; Wang X Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424073 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle. Dewandre A; Rivero-Rodriguez J; Vitry Y; Sobac B; Scheid B Sci Rep; 2020 Dec; 10(1):21616. PubMed ID: 33303772 [TBL] [Abstract][Full Text] [Related]
14. Versatile reconfigurable glass capillary microfluidic devices with Lego® inspired blocks for drop generation and micromixing. Bandulasena MV; Vladisavljević GT; Benyahia B J Colloid Interface Sci; 2019 Apr; 542():23-32. PubMed ID: 30721833 [TBL] [Abstract][Full Text] [Related]
15. A double-step emulsification device for direct generation of double emulsions. Lai YK; Opalski AS; Garstecki P; Derzsi L; Guzowski J Soft Matter; 2022 Aug; 18(33):6157-6166. PubMed ID: 35770691 [TBL] [Abstract][Full Text] [Related]
16. Glass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations. Vladisavljević GT; Shahmohamadi H; Das DB; Ekanem EE; Tauanov Z; Sharma L J Colloid Interface Sci; 2014 Mar; 418():163-70. PubMed ID: 24461831 [TBL] [Abstract][Full Text] [Related]
17. High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy. Bardin D; Martz TD; Sheeran PS; Shih R; Dayton PA; Lee AP Lab Chip; 2011 Dec; 11(23):3990-8. PubMed ID: 22011845 [TBL] [Abstract][Full Text] [Related]
18. Stochastic Jetting and Dripping in Confined Soft Granular Flows. Bogdan M; Montessori A; Tiribocchi A; Bonaccorso F; Lauricella M; Jurkiewicz L; Succi S; Guzowski J Phys Rev Lett; 2022 Mar; 128(12):128001. PubMed ID: 35394304 [TBL] [Abstract][Full Text] [Related]
19. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
20. Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices. Josephides DN; Sajjadi S Langmuir; 2015 Jan; 31(3):1218-24. PubMed ID: 25517938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]