BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 28601774)

  • 21. Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches.
    Yavari S; Malakahmad A; Sapari NB
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):17928-40. PubMed ID: 27255313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of poultry wastes into energy feedstocks.
    Kantarli IC; Kabadayi A; Ucar S; Yanik J
    Waste Manag; 2016 Oct; 56():530-9. PubMed ID: 27440220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality.
    Hopa DY; Alagöz O; Yılmaz N; Dilek M; Arabacı G; Mutlu T
    Waste Manag Res; 2019 Sep; 37(9):925-933. PubMed ID: 31319779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic pyrolysis of palm kernel shell waste in a fluidized bed.
    Kim SW; Koo BS; Lee DH
    Bioresour Technol; 2014 Sep; 167():425-32. PubMed ID: 25006017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microwave induced pyrolysis of oil palm biomass.
    Salema AA; Ani FN
    Bioresour Technol; 2011 Feb; 102(3):3388-95. PubMed ID: 20970995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.
    Thangalazhy-Gopakumar S; Al-Nadheri WMA; Jegarajan D; Sahu JN; Mubarak NM; Nizamuddin S
    Bioresour Technol; 2015 Feb; 178():65-69. PubMed ID: 25278112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.
    Li D; Briens C; Berruti F
    Bioresour Technol; 2015; 189():7-14. PubMed ID: 25863324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyrolysis behaviors of anaerobic digestion residues in a fixed-bed reactor with rapid infrared heating.
    Hu E; Li M; Tian Y; Yi X; Dai C; Shao S; Li C; Zhao Y
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51815-51826. PubMed ID: 35257338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products.
    Varma AK; Thakur LS; Shankar R; Mondal P
    Waste Manag; 2019 Apr; 89():224-235. PubMed ID: 31079735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A study on pyrolysis of Canada thistle (Cirsium arvense) with titania based catalysts for bio-fuel production.
    Aysu T
    Bioresour Technol; 2016 Nov; 219():175-184. PubMed ID: 27490443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrolysis Oil Biorefinery.
    Meier D
    Adv Biochem Eng Biotechnol; 2019; 166():301-337. PubMed ID: 28289770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.
    Rajamohan S; Kasimani R
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9523-9538. PubMed ID: 29354857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect.
    Chen W; Chen Y; Yang H; Xia M; Li K; Chen X; Chen H
    Bioresour Technol; 2017 Dec; 245(Pt A):860-868. PubMed ID: 28926919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil.
    Tshikesho RS; Kumar A; Huhnke RL; Apblett A
    Bioresour Technol; 2019 Aug; 285():121299. PubMed ID: 31003206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.
    Tinwala F; Mohanty P; Parmar S; Patel A; Pant KK
    Bioresour Technol; 2015; 188():258-64. PubMed ID: 25770670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed.
    Kim SW; Koo BS; Lee DH
    Bioresour Technol; 2014 Jun; 162():96-102. PubMed ID: 24747387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.
    Qian Y; Zhang J; Wang J
    Bioresour Technol; 2014 Dec; 174():95-102. PubMed ID: 25463787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-oil from cassava peel: a potential renewable energy source.
    Ki OL; Kurniawan A; Lin CX; Ju YH; Ismadji S
    Bioresour Technol; 2013 Oct; 145():157-61. PubMed ID: 23453024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.
    Idris J; Shirai Y; Andou Y; Mohd Ali AA; Othman MR; Ibrahim I; Yamamoto A; Yasuda N; Hassan MA
    Waste Manag Res; 2016 Feb; 34(2):176-80. PubMed ID: 26612557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization.
    Park JY; Kim JK; Oh CH; Park JW; Kwon EE
    J Environ Manage; 2019 Mar; 234():138-144. PubMed ID: 30616185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.