These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 28602017)
1. Design and evaluation of artificial cornea with core-skirt design using polyhydroxyethyl methacrylate and graphite. Sinha M; Gupte T Int Ophthalmol; 2018 Jun; 38(3):1225-1233. PubMed ID: 28602017 [TBL] [Abstract][Full Text] [Related]
2. Engineering copolymeric artificial cornea with salt porogen. Zellander A; Wardlow M; Djalilian A; Zhao C; Abiade J; Cho M J Biomed Mater Res A; 2014 Jun; 102(6):1799-808. PubMed ID: 23784918 [TBL] [Abstract][Full Text] [Related]
3. T-style keratoprosthesis based on surface-modified poly (2-hydroxyethyl methacrylate) hydrogel for cornea repairs. Xiang J; Sun J; Hong J; Wang W; Wei A; Le Q; Xu J Mater Sci Eng C Mater Biol Appl; 2015 May; 50():274-85. PubMed ID: 25746271 [TBL] [Abstract][Full Text] [Related]
4. New strategy for design and fabrication of polymer hydrogel with tunable porosity as artificial corneal skirt. Cao D; Zhang Y; Cui Z; Du Y; Shi Z Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):665-672. PubMed ID: 27770940 [TBL] [Abstract][Full Text] [Related]
5. Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Myung D; Koh W; Bakri A; Zhang F; Marshall A; Ko J; Noolandi J; Carrasco M; Cochran JR; Frank CW; Ta CN Biomed Microdevices; 2007 Dec; 9(6):911-22. PubMed ID: 17237989 [TBL] [Abstract][Full Text] [Related]
6. Designing a gas foamed scaffold for keratoprosthesis. Zellander A; Gemeinhart R; Djalilian A; Makhsous M; Sun S; Cho M Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3396-403. PubMed ID: 23706226 [TBL] [Abstract][Full Text] [Related]
7. An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Chirila TV Biomaterials; 2001 Dec; 22(24):3311-7. PubMed ID: 11700803 [TBL] [Abstract][Full Text] [Related]
8. A core-skirt designed artificial cornea with orthogonal microfiber grid scaffold. Wang J; Chen Y; Bai Y; Quan D; Wang Z; Xiong L; Shao Z; Sun W; Mi S Exp Eye Res; 2020 Jun; 195():108037. PubMed ID: 32343943 [TBL] [Abstract][Full Text] [Related]
9. A sintered graphene/titania material as a synthetic keratoprosthesis skirt for end-stage corneal disorders. Li Z; Goh TW; Yam GH; Thompson BC; Hu H; Setiawan M; Sun W; Riau AK; Tan DT; Khor KA; Mehta JS Acta Biomater; 2019 Aug; 94():585-596. PubMed ID: 31129362 [TBL] [Abstract][Full Text] [Related]
10. Novel materials to enhance keratoprosthesis integration. Sandeman SR; Faragher RG; Allen MC; Liu C; Lloyd AW Br J Ophthalmol; 2000 Jun; 84(6):640-4. PubMed ID: 10837393 [TBL] [Abstract][Full Text] [Related]
11. Preliminary evaluation of a hydrogel core-and-skirt keratoprosthesis in the rabbit cornea. Crawford GJ; Chirila TV; Vijayasekaran S; Dalton PD; Constable IJ J Refract Surg; 1996; 12(4):525-9. PubMed ID: 8771551 [TBL] [Abstract][Full Text] [Related]
12. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea. Jiang H; Zuo Y; Zhang L; Li J; Zhang A; Li Y; Yang X J Mater Sci Mater Med; 2014 Mar; 25(3):941-52. PubMed ID: 24464723 [TBL] [Abstract][Full Text] [Related]
13. [Synthesis and properties of poly(hydroxyethyl methacrylate) hydrogel for IOL materials]. Liu F; Zhou X; Cui F; Jia D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):595-8. PubMed ID: 17713269 [TBL] [Abstract][Full Text] [Related]
14. [Implantation of modified polyhydroxyethyl methacrylate-polymethyl methacrylate keratoprostheses in rabbit and monkey corneas]. Guo P; Chen JQ; Tan BH; Wang ZC; Liu ZG; Yuan J; Gu JJ; Huang H Zhonghua Yan Ke Za Zhi; 2007 Jul; 43(7):602-7. PubMed ID: 17897548 [TBL] [Abstract][Full Text] [Related]
15. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. Çetin D; Kahraman AS; Gümüşderelioğlu M J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330 [TBL] [Abstract][Full Text] [Related]
16. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978 [TBL] [Abstract][Full Text] [Related]
17. Histologic evaluation during healing of hydrogel core-and-skirt keratoprostheses in the rabbit eye. Vijayasekaran S; Hicks CR; Chirila TV; Fitton JH; Clayton AB; Lou X; Platten S; Crawford GJ; Constable IJ Cornea; 1997 May; 16(3):352-9. PubMed ID: 9143811 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, physical characterization, and biological performance of sequential homointerpenetrating polymer network sponges based on poly(2-hydroxyethyl methacrylate). Lou X; Vijayasekaran S; Chirila TV; Maley MA; Hicks CR; Constable IJ J Biomed Mater Res; 1999 Dec; 47(3):404-11. PubMed ID: 10487893 [TBL] [Abstract][Full Text] [Related]
19. Surface Modification of PMMA to Improve Adhesion to Corneal Substitutes in a Synthetic Core-Skirt Keratoprosthesis. Riau AK; Mondal D; Yam GH; Setiawan M; Liedberg B; Venkatraman SS; Mehta JS ACS Appl Mater Interfaces; 2015 Oct; 7(39):21690-702. PubMed ID: 26389670 [TBL] [Abstract][Full Text] [Related]
20. Design and Biocompatibility of a Novel, Flexible Artificial Cornea. Li G; Aldave AJ; Amescua G; Colby KA; Cortina MS; de la Cruz J; Parel JA; Schmiedel TB; Akpek EK Transl Vis Sci Technol; 2024 May; 13(5):19. PubMed ID: 38776107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]