These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 28602084)
1. Evaluation of the Interaction between Pesticides and a Cell Membrane Model by Surface Plasmon Resonance Spectroscopy Analysis. Moriwaki H; Yamada K; Nakanishi H J Agric Food Chem; 2017 Jul; 65(26):5390-5396. PubMed ID: 28602084 [TBL] [Abstract][Full Text] [Related]
2. Development of a novel evaluation method for air particles using surface plasmon resonance spectroscopy analysis. Tanaka R; Gomi R; Funasaka K; Asakawa D; Nakanishi H; Moriwaki H Analyst; 2013 Sep; 138(18):5437-43. PubMed ID: 23885351 [TBL] [Abstract][Full Text] [Related]
3. Surface plasmon resonance analysis on interactions of food components with a taste epithelial cell model. Miyano M; Yamashita H; Sakurai T; Nakajima K; Ito K; Misaka T; Ishimaru Y; Abe K; Asakura T J Agric Food Chem; 2010 Nov; 58(22):11870-5. PubMed ID: 21038889 [TBL] [Abstract][Full Text] [Related]
4. Preparation of lipid membrane surfaces for molecular interaction studies by surface plasmon resonance biosensors. Besenicar MP; Anderluh G Methods Mol Biol; 2010; 627():191-200. PubMed ID: 20217622 [TBL] [Abstract][Full Text] [Related]
5. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Patching SG Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical surface plasmon resonance detection of enzymatic reaction in bilayer lipid membranes. Wang J; Wang F; Chen H; Liu X; Dong S Talanta; 2008 May; 75(3):666-70. PubMed ID: 18585129 [TBL] [Abstract][Full Text] [Related]
8. Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes. Rossi C; Homand J; Bauche C; Hamdi H; Ladant D; Chopineau J Biochemistry; 2003 Dec; 42(51):15273-83. PubMed ID: 14690437 [TBL] [Abstract][Full Text] [Related]
9. Surface plasmon resonance spectroscopy: a new lead in studying the membrane binding of amyloidogenic transthyretin. Hou X; Small DH; Aguilar MI Methods Mol Biol; 2011; 752():215-28. PubMed ID: 21713640 [TBL] [Abstract][Full Text] [Related]
10. Surface plasmon resonance spectroscopy in determination of the interactions between amyloid beta proteins (Abeta) and lipid membranes. Hou X; Small DH; Aguilar MI Methods Mol Biol; 2010; 627():225-35. PubMed ID: 20217625 [TBL] [Abstract][Full Text] [Related]
11. Surface plasmon resonance for measuring interactions of proteins with lipid membranes. Hodnik V; Anderluh G Methods Mol Biol; 2013; 974():23-36. PubMed ID: 23404270 [TBL] [Abstract][Full Text] [Related]
12. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N; Shai Y Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173 [TBL] [Abstract][Full Text] [Related]
13. Characterization of pore formation by streptolysin O on supported lipid membranes by impedance spectroscopy and surface plasmon resonance spectroscopy. Wilkop T; Xu D; Cheng Q Langmuir; 2007 Jan; 23(3):1403-9. PubMed ID: 17241065 [TBL] [Abstract][Full Text] [Related]
14. Interaction of protein phosphatase inhibitors with membrane lipids assessed by surface plasmon resonance based binding technique. Bécsi B; Kiss A; Erdődi F Chem Phys Lipids; 2014 Oct; 183():68-76. PubMed ID: 24887755 [TBL] [Abstract][Full Text] [Related]
15. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor. Borch J; Torta F; Sligar SG; Roepstorff P Anal Chem; 2008 Aug; 80(16):6245-52. PubMed ID: 18616345 [TBL] [Abstract][Full Text] [Related]
16. Biotinylated lipid bilayer disks as model membranes for biosensor analyses. Lundquist A; Hansen SB; Nordström H; Danielson UH; Edwards K Anal Biochem; 2010 Oct; 405(2):153-9. PubMed ID: 20599649 [TBL] [Abstract][Full Text] [Related]
17. Detection of membrane-binding proteins by surface plasmon resonance with an all-aqueous amplification scheme. Liu Y; Cheng Q Anal Chem; 2012 Apr; 84(7):3179-86. PubMed ID: 22439623 [TBL] [Abstract][Full Text] [Related]
18. Surface plasmon resonance spectroscopy for studying the membrane binding of antimicrobial peptides. Hall K; Aguilar MI Methods Mol Biol; 2010; 627():213-23. PubMed ID: 20217624 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Erb EM; Chen X; Allen S; Roberts CJ; Tendler SJ; Davies MC; Forsén S Anal Biochem; 2000 Apr; 280(1):29-35. PubMed ID: 10805517 [TBL] [Abstract][Full Text] [Related]
20. Peeking into a secret world of pore-forming toxins: membrane binding processes studied by surface plasmon resonance. Anderluh G; Macek P; Lakey JH Toxicon; 2003 Sep; 42(3):225-8. PubMed ID: 14559072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]